精英家教网 > 高中数学 > 题目详情

已知函数,其中    

(1)      当满足什么条件时,取得极值?

(2)      已知,且在区间上单调递增,试用表示出的取值范围.

解析:  (1)由已知得,令,得,

要取得极值,方程必须有解,

所以△,即,   此时方程的根为

,,

所以  

时,

x

(-∞,x1)

x 1

(x1,x2)

x2

(x2,+∞)

f’(x)

0

0

f (x)

增函数

极大值

减函数

极小值

增函数

所以在x 1, x2处分别取得极大值和极小值.

时,

x

(-∞,x2)

x 2

(x2,x1)

x1

(x1,+∞)

f’(x)

0

0

f (x)

减函数

极小值

增函数

极大值

减函数

所以在x 1, x2处分别取得极大值和极小值.

综上,当满足时, 取得极值.   

(2)要使在区间上单调递增,需使上恒成立.

恒成立,  所以

,,

(舍去), 

时,,当,单调增函数;

,单调减函数,

所以当时,取得最大,最大值为.

所以

时,,此时在区间恒成立,所以在区间上单调递增,当最大,最大值为,所以

综上,当时, ;    当时,    

【命题立意】:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年大丰调研) (16分)

已知函数(其中) ,

从左到右依次是函数图象上三点,且.

(Ⅰ) 证明: 函数上是减函数;

(Ⅱ)求证:是钝角三角形;

(Ⅲ) 试问,能否是等腰三角形?若能,求面积的最大值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年天津卷文)(12分)

已知函数其中为参数,且

       (I)当时,判断函数是否有极值;

       (II)要使函数的极小值大于零,求参数的取值范围;

       (III)若对(II)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数  其中。作出函数的图象;

查看答案和解析>>

科目:高中数学 来源:2013届浙江省杭州市萧山五校高二下期中理科数学试卷(解析版) 题型:解答题

已知函数(其中常数a,b∈R)。 是奇函数.

(Ⅰ)求的表达式;

(Ⅱ)求在区间[1,2]上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省成都市高三上学期九月诊断性考试理科数学卷 题型:解答题

(本题满分12分)

已知函数其中a>0,e为自然对数的底数。

(I)求

(II)求的单调区间;

(III)求函数在区间[0,1]上的最大值。

 

查看答案和解析>>

同步练习册答案