精英家教网 > 高中数学 > 题目详情
15.已知点A(-2,2),B(-2,6),C(4,-2),点P坐标满足x2+y2≤4,求|PA|2+|PB|2+|PC|2的取值范围是[72,88].

分析 表示出|PA|2+|PB|2+|PC|2,利用点P满足x2+y2≤4,即可得出结论.

解答 解:∵点A(-2,-2),B(-2,6),C(4,-2),
∴设P(a,b),
则|PA|2+|PB|2+|PC|2
=(a+2)2+(b+2)2+(a+2)2+(b-6)2+(a-4)2+(b+2)2
=3a2+3b2-4b+68,
∵点P满足x2+y2≤4,
∴a2+b2≤4,
∴-2≤b≤2.
把a2=4-b2代入3a2+3b2-4b+68
=12-3b2+3b2-4b+68
=-4b+80,
∵-2≤b≤2,
所以-8≤-4b≤8
80-8≤80-4b≤80+8,
72≤-4b+80≤88
∴最大值是88,最小值是72,
∴|PA|2+|PB|2+|PC|2的取值范围是[72,88].
故答案为[72,88].

点评 本题考查平面上两点间距离的计算,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若$\sqrt{a-4}+|{\begin{array}{l}{b-1}\end{array}}|=0$,且一元二次方程kx2+ax+b=0有实数根,则k的取值范围是(-∞,0)∪(0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出下列命题:
①在△ABC若A<B,则sinA<sinB;
②函数f(x)=$\sqrt{1-sinx}$+$\sqrt{sinx-1}$既是奇函数又是偶函数;
③函数y=|tan(2x-$\frac{π}{3}$)|的周期是$\frac{π}{2}$;
④在同一坐标系中,函数y=sinx的图象与函数y=-lnx+1的图象有三个公共点.
其中正确的个数是①③④.(填出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若偶函数f(x)的定义域为[a-4,a],奇函数$g(x)=\frac{{{2^x}-2b}}{{{x^2}+1}}$,则ab的值为(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinx+cosx=$\frac{1}{3}$,且x是第二象限角.
求(1)sinx-cosx
(2)sin3x-cos3x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数y=f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x+x2,若存在正数a,b,使得当x∈[a,b]时,f(x)的值域为$[{\frac{1}{b},\frac{1}{a}}]$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如果函数f(x)满足:在定义域D内存在x0,使得对于给定常数t,有f(x0+t)=f(x0)•f(t)成立,则称f(x)为其定义域上的t级分配函数.研究下列问题:
(1)判断函数f(x)=2x和g(x)=$\frac{2}{x}$是否为1级分配函数?说明理由;
(2)问函数φ(x)=)$\sqrt{\frac{a}{{x}^{2}+1}}$(a>0)能否成为2级分配函数,若能,则求出参数a的取值范围;若不能请说明理由;
(3)讨论是否存在实数a,使得对任意常数t(t∈R)函数φ(x)=$\sqrt{\frac{a}{{x}^{2}+1}}$(a>0)都是其定义域上的t级分配函数,若存在,求出参数a的取值范围,若不能请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.sin20°sin50°-cos160°sin40°的值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,在正四棱柱(底面是正方形的直棱柱)ABCD-A1B1C1D1中,E是BC的中点,F是C1D的中点,P是棱CC1所在直线上的动点.则下列三个命题:
(1)CD⊥PE           
(2)EF∥平面ABC1
(3)V${\;}_{P-{A}_{1}D{D}_{1}}$=V${\;}_{{D}_{1}-ADE}$
其中正确命题的个数有①②③.

查看答案和解析>>

同步练习册答案