精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=sinx-2$\sqrt{3}{sin^2}\frac{x}{2}$.
(I)求f(x)的最小正周期及单调递增区间;
(Ⅱ)求f(x)在区间$[{0,\frac{2π}{3}}]$上的最值.

分析 (1)由三角函数公式化简可得f(x)=2sin(x+$\frac{π}{3}$)-$\sqrt{3}$,可得周期,解$2kπ-\frac{π}{2}≤x+\frac{π}{3}≤2kπ+\frac{π}{2}$可得f(x)的递增区间;
(2)由x的范围可得$\frac{π}{3}≤x+\frac{π}{3}≤π$,结合解析式可得其最值.

解答 解:(1)由三角函数公式化简可得f(x)=sinx-2$\sqrt{3}{sin^2}\frac{x}{2}$
=sinx-2$\sqrt{3}$•$\frac{1-cosx}{2}$=sinx+$\sqrt{3}$cosx-$\sqrt{3}$=2sin(x+$\frac{π}{3}$)-$\sqrt{3}$
∴f(x)的最小正周期T=2π,
由$2kπ-\frac{π}{2}≤x+\frac{π}{3}≤2kπ+\frac{π}{2}$可得$2kπ-\frac{5π}{6}≤x≤2kπ+\frac{π}{6}$,
∴f(x)的递增区间为$[{2kπ-\frac{5π}{6},2kπ+\frac{π}{6}}]$(k∈Z);
(2)∵$0≤x≤\frac{2π}{3}$,∴$\frac{π}{3}≤x+\frac{π}{3}≤π$.
当$x+\frac{π}{3}=π$即$x=\frac{2π}{3}$时,f(x)在区间$[0,\frac{2π}{3}]$上取得最小值,
∴代入计算可得f(x)的最小值为$f(\frac{2π}{3})=-\sqrt{3}$;
当$x+\frac{π}{3}=\frac{π}{2}$即$x=\frac{π}{6}$时,f(x)在区间$[0,\frac{2π}{3}]$上取得最大值,
∴代入计算可得f(x)的最大值为$f(\frac{π}{6})=2-\sqrt{3}$.

点评 本题考查三角函数的最值,涉及三角函数的周期性和单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,则截面的面积是2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=90°,∠EAC=60°,AB=AC.
(1)在直线AE上是否存在一点P,使得CP⊥平面ABE?请证明你的结论;
(2)求直线BC与平面ABE所成角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.椭圆$\frac{x^2}{4}+\frac{y^2}{2+k}=1$的离心率为$\frac{1}{2}$,则k的值为(  )
A.$-\frac{10}{3}$B.$\frac{10}{3}$C.$\frac{10}{3}$或1D.$-\frac{10}{3}$或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)={log_a}\frac{x-1}{x+1}$(其中a>0且a≠1).
(1)讨论函数f(x)的奇偶性;
(2)已知关于x的方程${log_a}\frac{m}{(x+1)(7-x)}=f(x)$在区间[2,6]上有实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}的前n项和${S_n}={n^3}$,则a6+a7+a8=387.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设A={x∈N|1≤x<7},则下列正确的是(  )
A.7∈AB.0∈AC.3∉AD.3.5∉A

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知0<x<2,求函数y=x(8-3x)的最大值$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)满足2f(x)+f($\frac{1}{x}$)=3x,则f(1)=1;f(x)=2x-$\frac{1}{x}$.

查看答案和解析>>

同步练习册答案