精英家教网 > 高中数学 > 题目详情
已知椭圆E:+=1(a>b>0)的离心率e=,a2与b2的等差中项为.
(1)求椭圆E的方程.
(2)A,B是椭圆E上的两点,线段AB的垂直平分线与x轴相交于点P(t,0),求实数t的取值范围.
(1) +=1   (2) (-,)
(1)由题意得
解得:.即椭圆E的方程为+=1.
(2)设A,B的坐标分别为(x1,y1),(x2,y2).
因线段AB的垂直平分线与x轴相交,
故AB不平行于y轴,即x1≠x2.
又交点为P(t,0),故|PA|=|PB|,
即(x1-t)2+=(x2-t)2+,
∴t=+ ①
∵A,B在椭圆上,∴=4-,=4-.
将上式代入①,得t=.
又∵-3≤x1≤3,-3≤x2≤3,且x1≠x2,
∴-6<x1+x2<6,则-<t<,
即实数t的取值范围是(-,).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知点D(0,-2),过点D作抛物线的切线l,切点A在第二象限。

(1)求切点A的纵坐标;
(2)若离心率为的椭圆恰好经过A点,设切线l交椭圆的另一点为B,若设切线l,直线OA,OB的斜率为k,,①试用斜率k表示②当取得最大值时求此时椭圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C:  +=1(a>b>0)的离心率e=,a+b=3.

(1)求椭圆C的方程;
(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m.证明2m-k为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点P与平面上两定点连线的斜率的积为定值.
(1)试求动点P的轨迹方程C.
(2)设直线与曲线C交于M、N两点,当|MN|=时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆上有个不同的点为右焦点,组成公差的等差数列,则的最大值为( )
A.199B.200 C.99D.100

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P是双曲线右支上的一点,M,N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为( )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0)的一个顶点A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程.
(2)当△AMN的面积为时,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线x+y+4=0有且仅有一个交点,则椭圆的长轴长为(  )
A.3  B.2  C.2  D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.
(1)求椭圆C的方程;
(2)AB为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C于点P.设t,求实数t的值.

查看答案和解析>>

同步练习册答案