精英家教网 > 高中数学 > 题目详情
(理) 袋中有5个红球3个白球,若从中一次取一个,取三次,取后放回,取出二红一白的概率是(  )
A、
225
512
B、
15
128
C、
5
28
D、
15
28
考点:古典概型及其概率计算公式
专题:概率与统计
分析:设取得红球的事件为A,取得白球的事件为B,先求出P(A)=
5
8
,P(B)=
3
8
,在运用独立重复试验解决.
解答: 解:袋中有5个红球3个白球,若从中一次取一个,取后放回,
∵设取得红球的事件为A,取得白球的事件为B,
∴P(A)=
5
8
,P(B)=
3
8

∴取出二红一白的概率C
 
2
3
5
8
2×
3
8
=
225
512

故选:A
点评:本题考查了古典概率,及其计算概率的公式,属于容易题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=x2+2
1
0
f(x)dx,则
1
0
f(x)dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形

(Ⅰ)证明:BN⊥平面C1B1N;
(Ⅱ)设二面角C-NB1-C1的平面角为θ,求cosθ的值;
(Ⅲ)M为AB中点,在CB上是否存在一点P,使得MP∥平面CNB1,若存在,求出BP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)上点P(1,f(1))处的切线方程为3x-y+1=0.
(1)若y=f(x)在x=-2时有极值,求y=f(x)的表达式;
(2)在(1)的条件下求y=f(x)在[-3,2]上的最值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=
[x]
x
(x>0),则给出以下四个结论:
①函数f(x)的值域为[0,1];
②函数f(x)的图象是一条曲线;
③函数f(x)是(0,+∞)上的减函数;
④函数g(x)=f(x)-a有且仅有3个零点时
3
4
<a≤
4
5

其中正确的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的通项公式是an=
2n-1
2n
,其前n项和Sn=
321
64
,则项数n=(  )
A、13B、10C、9D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(4-x)ex的单调递减区间是(  )
A、(-∞,4)
B、(-∞,3)
C、(4,+∞)
D、(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x|x-a|,其中x∈R,
(1)判断函数f(x)的奇偶性;    
(2)写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

由命题“Rt△ABC中,两直角边分别为a,b,斜边上的高为h,则得
1
h2
=
1
a2
+
1
b2
”由此可类比出命题“若三棱锥S-ABC的三条侧棱SA,SB,SC两两垂直,长分别为a,b,c,底面ABC上的高为h,则得
 

查看答案和解析>>

同步练习册答案