精英家教网 > 高中数学 > 题目详情

如图,点是以线段为直径的圆上一点,于点,过点作圆的切线,与的延长线交于点,点的中点,连结并延长与相交于点,延长的延长线相交于点.

(Ⅰ)求证:
(Ⅱ)求证:是圆的切线.

(Ⅰ)详见试题解析;(Ⅱ)详见试题解析.

解析试题分析:(Ⅰ)由可得,从而可得
通过等量代换及题设“点的中点”可得.
(Ⅱ)目标是要证是直角,连结便可看出只要证得是等腰三角形即可.显然是等腰三角形。因为直径上的圆周角是直角,,所以是直角三角形. 由(Ⅰ)得所以,从而本题得证.
试题解析:证明:(Ⅰ) 是圆的直径,是圆的切线,
.又

可以得知,   

的中点,.                        5分

(Ⅱ)连结
是圆的直径,
中,由(Ⅰ)得知是斜边的中点,


是圆的切线,

是圆的切线.                                                   10分
考点:1、相似三角形;2、圆的性质;3、等量代换;4、直角三角形斜边上的中线;5、几何证明

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,AB、CD都是圆的弦,且AB∥CD,F为圆上一点,延长FD、AB交于点E.

求证:AE·AC=AF·DE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的半径,且是半径上一点:延长交圆于点,过作圆的切线交的延长线于点.求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,己知边上一点,经过点,交于另一点经过点,交于另一点的另一交点为.

(I)求证:四点共圆;
(II)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交于BC于点E,AB=2AC.

(Ⅰ)求证:BE=2AD;
(Ⅱ)当AC=1,EC=2时,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知切⊙于点E,割线PBA交⊙于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.

求证:(Ⅰ);   (Ⅱ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,的直径,弦垂直,并与相交于点,点为弦上异于点的任意一点,连结并延长交于点.
⑴ 求证:四点共圆;
⑵ 求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的内接四边形,,过点的圆的切线与的延长线交于点,证明:

(Ⅰ)
(II)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图AB为圆O直径,P为圆O外一点,过P点作PC⊥AB,垂是为C,PC交圆O于D点,PA交圆O于E点,BE交PC于F点。

(I)求证:∠PFE=∠PAB (II)求证:CD2=CF·CP

查看答案和解析>>

同步练习册答案