精英家教网 > 高中数学 > 题目详情
如图,四棱锥的底面是正方形,侧棱底面,过垂直点,作垂直点,平面点,且.

(1)设点上任一点,试求的最小值;
(2)求证:在以为直径的圆上;
(3)求平面与平面所成的锐二面角的余弦值.
(1);(2)详见解析;(3).

试题分析:(1)将侧面和侧面沿着展开至同一平面上,利用三点共线结合余弦定理求出的最小值,即线段的长度;(2)证平面,从而得到,同理得到,进而证明在以为直径的圆上;(3)方法一是建立以点为坐标原点,分别以所在的直线为轴的空间直角坐标系,利用空间向量法求平面与平面所成的锐二面角的余弦值;方法二是延长使得它们相交,找出二面角的棱,然后利用三垂线法找出平面与平面所成的锐二面角的平面角,利用直角三角函数来求相应角的余弦值.
试题解析:(1)将侧面绕侧棱旋转到与侧面在同一平面内,如下图示,

则当三点共线时,取最小值,这时,的最小值即线段的长,
,则
中,
在三角形中,有余弦定理得:


(2)底面,又
平面,又平面
平面
平面
同理在以为直径的圆上;
(3)方法一:如图,以为原点,分别以所在的直线为轴,建立空间直角坐标系如下图示,则,由(1)可得平面
为平面的一个法向量,
为平面的一个法向量,
设平面与平面所成的锐二面角的平面角为

平面与平面所成的锐二面角的余弦值
方法二: 由可知,故


设平面平面平面

平面,又平面

为平面与平面所成的锐二面角的一个平面角,


平面与平面所成的锐二面角的余弦值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,
。M、N分别是AC和BB1的中点。
(1)求二面角的大小。
(2)证明:在AB上存在一个点Q,使得平面⊥平面,   
并求出的长度。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理)已知直三棱柱中,是棱的中点.如图所示.
 
(1)求证:平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,几何体中,为边长为的正方形,为直角梯形,

(1)求异面直线所成角的大小;
(2)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面为正方形,侧面底面为等腰直角三角形,且分别为底边和侧棱的中点.

(1)求证:∥平面
(2)求证:平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥中,,点在平面内的射影恰为的重心,M为侧棱上一动点.

(1)求证:平面平面
(2)当M为的中点时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,SD=AD=AB,E是SA的中点.

(1)求证:平面BED⊥平面SAB.
(2)求直线SA与平面BED所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,.
(1)试确定m,使直线AP与平面BDD1B1所成角为60º;
(2)在线段上是否存在一个定点,使得对任意的m,
⊥AP,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知实数x,y,z满足,则的最小值是(    )
A.
B.3
C.6
D.9

查看答案和解析>>

同步练习册答案