【题目】已知函数,,其中e是自然对数的底数.
(1)若函数的极大值为,求实数a的值;
(2)当a=e时,若曲线与在处的切线互相垂直,求的值;
(3)设函数,若>0对任意的x(0,1)恒成立,求实数a的取值范围.
【答案】(1)a=1;(2);(3)[,).
【解析】
(1)利用导数求出的极大值,即得a的值;
(2)由得到,设,根据函数的单调性和得到;
(3)由题得对任意x(0,1)恒成立,设,得到对任意x(0,1)恒成立,即,设,x(0,1),求出的最大值得解.
解:(1)因为,则,
因为,所以a>0,
则当x(0,e)时,,单调递增,
当x(e,)时,,单调递减,
所以当x=e时,的极大值,解得a=1;
(2)当a=e时,,,
则,,
由题意知,,
整理得,
设,则,所以单调递增,
因为,所以;
(3)由题意可知,对任意x(0,1)恒成立,
整理得对任意x(0,1)恒成立,
设,由(1)可知,在(0,1)上单调递增,
且当x(1,)时,,当x(0,1)时,,
若,则,
若,因为,且在(0,1)上单调递增,所以,
综上可知,对任意x(0,1)恒成立,即,
设,x(0,1),则,所以单调递增,
所以,即a的取值范围为[,).
科目:高中数学 来源: 题型:
【题目】在统计学中,同比增长率一般是指和去年同期相比较的增长率,环比增长率一般是指和前一时期相比较的增长率.2020年2月29日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据2019年居民消费价格月度涨跌幅度统计折线图,下列说法正确的是( )
A.2019年我国居民每月消费价格与2018年同期相比有涨有跌
B.2019年我国居民每月消费价格中2月消费价格最高
C.2019年我国居民每月消费价格逐月递增
D.2019年我国居民每月消费价格3月份较2月份有所下降
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了贯彻落实党中央对新冠肺炎疫情防控工作的部署和要求,坚决防范疫情向校园蔓延,切实保障广大师生身体健康和生命的安全,教育主管部门决定通过电视频道、网络平台等多种方式实施线上教育教学工作.为了了解学生和家长对网课授课方式的满意度,从经济不发达的A城市和经济发达的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如下:
若评分不低于80分,则认为该用户对此授课方式“认可”,否则认为该用户对此授课方式“不认可”.以该样本中A,B城市的用户对此授课方式“认可”的频率分别作为A,B城市用户对此授课方式“认可”的概率.现从A城市和B城市的所有用户中分别随机抽取2个用户,用表示这4个用户中对此授课方式“认可”的用户个数,则__________;用表示从A城市随机抽取2个用户中对此授课方式“认可”的用户个数,则的数学期望为_________ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列中前两项给定,若对于每个正整数,均存在正整数()使得,则称数列为“数列”.
(1)若数列为的等比数列,当时,试问:与是否相等,并说明数列是否为“数列”;
(2)讨论首项为、公差为的等差数列是否为“数列”,并说明理由;
(3)已知数列为“数列”,且 ,记,,其中正整数, 对于每个正整数,当正整数分别取1、2、、时的最大值记为、最小值记为. 设,当正整数满足时,比较与的大小,并求出的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一种新的验血技术可以提高血液检测效率.现某专业检测机构提取了份血液样本,其中只有1份呈阳性,并设计了如下混合检测方案:先随机对其中份血液样本分别取样,然后再混合在一起进行检测,若检测结果为阴性,则对另外3份血液逐一检测,直到确定呈阳性的血液为止;若检测结果呈阳性,测对这份血液再逐一检测,直到确定呈阳性的血液为止.
(1)若,求恰好经过3次检测而确定呈阳性的血液的事件概率;
(2)若,宜采用以上方案检测而确定呈阳性的血液所需次数为,
①求的概率分布;
②求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com