精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知是椭圆上的一点,从原点

作两条切线,分别交椭圆于点

(1)若点在第一象限,且直线互相垂直,求圆的方程;

(2)若直线的斜率存在,并记为,求的值;

(3)试问是否为定值?若是,求出该值;若不是,说明理由.

【答案】(1)(2)(3)

【解析】

试题分析:(1)由圆的方程可知,圆的半径,由此可求出圆的方程;(2)由已知得直线都与圆相切,化简可得,再利用点在椭圆上,即可求解的值;(3)当直线不落在坐标轴上时,设,利用直线方程与椭圆的方程联立方程组,得出,同理,由此可求解为定值.

试题解析:(1)由圆的方程知圆的半径,因为直线互相垂直,且和圆相切,所以,即

又点在椭圆上,所以

联立①②,解得,所以,所求圆的方程为

(2)因为直线都与圆相切,所以,化简得,因为点在椭圆上,所以,即,所以

(3)方法一(1)当直线不落在坐标轴上时,设

由(2)知,所以,故.因为在椭圆上,所以

,所以

整理得,所以

所以

方法(二)(1)当直线不落在坐标轴上时,设

联立,解得,所以

同理,得.由(2),得

所以

(2)当直线落在坐标轴上时,显然有

综上:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆的左焦点为,椭圆上任意点到的最远距离是,过直线轴的交点任作一条斜率不为零的直线与椭圆交于不同的两点,点关于轴的对称点为.

(1)求椭圆的方程;

(2)求证:三点共线;

(3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,.

(1)当为何值时,直线是曲线的切线;

(2)若不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96106],样本数据分组为[9698),[98100),[100102)[102104),[104106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ).

A. 90B. 75C. 60D. 45

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知菱形与直角梯形所在的平面互相垂直,其中的中点

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值;

(Ⅲ)设为线段上一点,,若直线与平面所成角的正弦值为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右焦点为,右顶点为.已知,其中为原点, 为椭圆的离心率.

1)求椭圆的方程及离心率的值;

2)设过点的直线与椭圆交于点不在轴上),垂直于的直线与交于点,与轴交于点.,且,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.

(1)求的值;

(2)分别求出甲、乙两组数据的方差,并由此分析两组技工的加工水平;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆)的左、右焦点为,右顶点为,上顶点为.已知

1)求椭圆的离心率;

2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的 500 名志愿者中随机抽取 100 名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是[20,25),[25,30),[30,35),[35,40),[40,45].

(1)求图中x的值并根据频率分布直方图估计这 500 名志愿者中年龄在[35,40)岁的人数;

(2)在抽出的 100 名志愿者中按年龄采用分层抽样的方法抽取 20 名参加中心广场的宣传活动,再从这 20 名中采用简单随机抽样方法选取 3 名志愿者担任主要负责人.记这 3 名志愿者中年龄低于 35 的人数为 X,求 X 的分布列及均值.

查看答案和解析>>

同步练习册答案