精英家教网 > 高中数学 > 题目详情
已知y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x.
(1)求f(x)的解析式;
(2)作出函数f(x)的图象,并指出其单调区间.(不需要严格证明)
分析:(1)由y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x,知当x<0时,f(x)=f(-x)=x2+2x,由此能求出f(x)的解析式.
(2)当x≥0时,y=x2-2x,抛物线开口向上,对称轴方程为x=1,顶点坐标(1,-1),当y=0时,x1=0,x2=2;当x=0时,y=0;当x<0时,y=x2+2x,抛物线开口向上,对称轴方程为x=-1,顶点坐标(-1,-1),当y=0时,x=-2.由此能作出函数f(x)的图象.结合图象,能求出f(x)的单调区间.
解答:解:(1)∵y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x,
当x<0时,-x>0,
f(-x)=(-x)2-2(-x)=x2+2x,
∴f(x)=f(-x)=x2+2x,
∴f(x)=
x2-2x,x≥0
x2+2x,x<0

(2)∵f(x)=
x2-2x,x≥0
x2+2x,x<0

∴当x≥0时,y=x2-2x,抛物线开口向上,对称轴方程为x=1,顶点坐标(1,-1),
当y=0时,x1=0,x2=2;当x=0时,y=0.
当x<0时,y=x2+2x,抛物线开口向上,对称轴方程为x=-1,顶点坐标(-1,-1),
当y=0时,x=-2.
由此能作出函数f(x)的图象如下:

结合图象,知f(x)的增区间是(-1,0),(1,+∞);减区间是(-∞,-1),(0,1).
点评:本题考查函数的解析式的求法,考查函数图象的作法,考查函数的单调区间的求法,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+
5x
的定义域为(0,+∞).设点P是函数图象上的任意一点,过点P分别作直线y=2x和y轴的垂线,垂足分别为M、N.
(1)|PM|•|PN|是否为定值?若是,求出该定值;若不是,说明理由;
(2)设点O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
ax
的定义域为(0,+∞),a>0且当x=1时取得最小值,设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值;
(2)问:PM•PN是否为定值?若是,则求出该定值,若不是,请说明理由;
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax+b存在极值点.
(1)求a的取值范围;
(2)过曲线y=f(x)外的点P(1,0)作曲线y=f(x)的切线,所作切线恰有两条,切点分别为A、B.
(ⅰ)证明:a=b;
(ⅱ)请问△PAB的面积是否为定值?若是,求此定值;若不是求出面积的取值范围.

查看答案和解析>>

同步练习册答案