精英家教网 > 高中数学 > 题目详情

函数f(x)=3x-4x3,x∈[0,1]的最小值是


  1. A.
    1
  2. B.
    1.5
  3. C.
    0
  4. D.
    -1
D
分析:由f(x)=3x-4x3,知f′(x)=3-12x2,令f′(x)=3-12x2=0,得x=±.由此能求出函数f(x)=3x-4x3,x∈[0,1]的最小值.
解答:∵f(x)=3x-4x3
∴f′(x)=3-12x2
令f′(x)=3-12x2=0,
得x=±

∴x=-(舍).
∵f(0)=0,f()==1,f(1)=3-4=-1.
∴函数f(x)=3x-4x3,x∈[0,1]的最小值是-1.
故选D.
点评:本题考查函数的最小值的求法,是基础题,解题时要认真审题,仔细解答.如本题解答中没有研究单调性,于课本例题解答步骤不同,但在最值一定是在极值与端点值取到这一规律下,这一解答方式就规避了单调性的讨论,使得运算量降低,解题时可参考技巧降低解题难度
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

27、对于函数f(x),若f(x0)=x0,则称x0为f(x)的“不动点”;若f[f(x0)]=x0,则称x0为f(x)的“稳定点”.函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f(x)=x},B={x|f[f(x)]=x}.
(1)设函数f(x)=3x+4求集合A和B;
(2)求证:A⊆B;
(3)设函数f(x)=ax2+bx+c(a≠0),且A=∅,求证:B=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明函数f(x)=
3x+1
在[3,5]上单调递减,并求函数在[3,5]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3x,x≤0
log3x,x>0
,则f(f(-
1
2
))=
-
1
2
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3x-1
x+1

(1)已知s=-t+
1
2
(t>1),求证:f(
t-1
t
)=
s+1
s

(2)证明:存在函数t=φ(s)=as+b(s>0),满足f(
s+1
s
)=
t-1
t

(3)设x1=
11
17
,xn+1=f(xn),n=1,2,….问:数列{
1
xn-1
}是否为等差数列?若是,求出数列{xn}中最大项的值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3x
+1,则
lim
△x→0
f(1-△x)-f(1)
△x
的值为(  )
A、-
1
3
B、
1
3
C、
2
3
D、0

查看答案和解析>>

同步练习册答案