精英家教网 > 高中数学 > 题目详情

已知双曲线G的中心在原点,它的渐近线与圆相切,过点P(-4,0)作斜率为的直线l,使得lG交于A、B两点,和y轴交于点C,并且点P在线段AB上,又满足

(1)求双曲线G的渐近线方程

(2)求双曲线G的方程

(3)椭圆S的中心在原点,它的短轴是G的实轴,如果S中垂直于l的平行弦的中点轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程。

(1)(2)(3)


解析:

(1)设双曲线G的渐近线方程为y=kx,则由渐近线与圆相切可得,所以,故渐近线方程为

(2)由(1)可设双曲线G的方程为,把直线l的方程代入双曲线并整理得     (1)

,P、A、B、C共线且在线段AB上

整理得

将(1)式带入得m=8故双曲线G的方程为

(3)由提议可设椭圆方程为设弦的端点分别为,MN的中点为,则作差得故垂直于l的平行弦中点的轨迹为直线截在内的部分。又由题意,这个轨迹恰好是的渐近线截在内的部分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为
14
的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|•|PB|=|PC|2
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为
14
的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|•|PB|=|PC|2
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴、如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当△ABP的面积最大时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线G的中心在原点,它的渐近线方程是y=±
1
2
x
.过点P(-4,0)作斜率为
1
4
的直线l,使得l和G交于A,B两点,和y轴交于点C,点P在线段AB上,并且满足|PA|•|PB|=|PC|2,求双曲线G的方程.

查看答案和解析>>

科目:高中数学 来源:2013届山东省济宁市高二上学期期末考试理科数学 题型:解答题

(本小题满分12分)

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线,使得和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.   

(1)求双曲线G的渐近线的方程;  

(2)求双曲线G的方程;

(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当的面积最大时点P的坐标.

 

 

查看答案和解析>>

科目:高中数学 来源:2013届吉林省高二上学期质量检测理科数学 题型:解答题

.已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线,使得和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.   

(1)求双曲线G的渐近线的方程;  

(2)求双曲线G的方程;

(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当的面积最大时点P的坐标.

 

查看答案和解析>>

同步练习册答案