精英家教网 > 高中数学 > 题目详情
11.在平面直角坐标系xoy中,点P到两点$({0,\sqrt{3}}),({0,-\sqrt{3}})$的距离之和等于4,设点P的轨迹为C
(1)写出曲线C的标准方程
(2)设直线y=kx+1与曲线C交于A,B两点,求当k为何值时,能使∠AOB=90°?
(3)在(2)的条件下,求|AB|的值.

分析 (1)由题意可得:点P的轨迹C为椭圆,设标准方程为:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),则c=$\sqrt{3}$,a=2,b2=a2-c2=1,解出可得椭圆的标准方程.
(2)设A(x1,y1),B(x2,y2),直线方程与椭圆联立,化为:(k2+4)x2+2kx-3=0,△>0恒成立,由∠AOB=90°,可得$\overrightarrow{OA}•\overrightarrow{OB}$=x1•x2+y1y2=(1+k2)x1•x2+k(x1+x2)+1=0,把根与系数的关系代入解得k.
(3)在(2)的条件下,x1+x2=$\frac{-2k}{{k}^{2}+4}$=$±\frac{4}{17}$,x1•x2=-$\frac{12}{17}$,利用|AB|=$\sqrt{(1+{k}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$即可得出.

解答 解:(1)由题意可得:点P的轨迹C为椭圆,设标准方程为:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),
则c=$\sqrt{3}$,a=2,b2=a2-c2=1,可得椭圆的标准方程为:$\frac{{y}^{2}}{4}+{x}^{2}$=1.
(2)设A(x1,y1),B(x2,y2),联立$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{y}^{2}}{4}+{x}^{2}=1}\end{array}\right.$,化为:(k2+4)x2+2kx-3=0,
△=4k2+12(k2+4)>0恒成立,
x1+x2=$\frac{-2k}{{k}^{2}+4}$,x1•x2=$\frac{-3}{{k}^{2}+4}$,
∵∠AOB=90°,∴$\overrightarrow{OA}•\overrightarrow{OB}$=x1•x2+y1y2=x1•x2+(kx1+1)(kx2+1)=(1+k2)x1•x2+k(x1+x2)+1=0,
∴(1+k2)•$\frac{-3}{{k}^{2}+4}$+$\frac{-2{k}^{2}}{{k}^{2}+4}$+1=0,
解得k=$±\frac{1}{2}$.满足△>0.
∴当k=$±\frac{1}{2}$时,能使∠AOB=90°.
(3)在(2)的条件下,x1+x2=$\frac{-2k}{{k}^{2}+4}$=$±\frac{4}{17}$,x1•x2=$\frac{-3}{{k}^{2}+4}$=-$\frac{12}{17}$,
|AB|=$\sqrt{(1+{k}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{(1+\frac{1}{4})[\frac{16}{1{7}^{2}}-4×(-\frac{12}{17})]}$=$\frac{4\sqrt{65}}{17}$.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题、数量积运算性质、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知△ABC的三内角A,B,C,所对三边分别为a,b,c,sin(A-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,若△ABC的面积S=24,b=10,则a的值是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如图所示),
(1)求分数在[70,80)中的人数;
(2)若用分层抽样的方法从分数在[40,50)和[50,60)的学生中共抽取5 人,该5 人中成绩在[40,50)的有几人;
(3)在(2)中抽取的5人中,随机抽取2 人,求分数在[40,50)和[50,60)各1 人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若α为第一象限角,且cosα=$\frac{2}{3}$,则tanα=$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知双曲线的中心在原点,焦点在坐标轴上,焦距为6,离心率为3,求双曲线的标准方程;
(2)已知抛物线的顶点在原点,对称轴是x轴,且焦点到准线的距离为1,求抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定义平面向量的一种运算:$\overrightarrow{a}$?$\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|sin$<\overrightarrow{a},\overrightarrow{b}$>,给出下列命题:
①$\overrightarrow{a}$?$\overrightarrow{b}$=$\overrightarrow{b}$?$\overrightarrow{a}$;
②λ($\overrightarrow{a}$?$\overrightarrow{b}$)=($λ\overrightarrow{a}$)?$\overrightarrow{b}$;
③($\overrightarrow{a}+\overrightarrow{b}$)?$\overrightarrow{c}$=($\overrightarrow{a}$?$\overrightarrow{c}$)+($\overrightarrow{b}$?$\overrightarrow{c}$);
④若$\overrightarrow{a}$=(x1,y1),$\overrightarrow{b}$=(x2,y2);则$\overrightarrow{a}$?$\overrightarrow{b}$=|x1y2-x2y1|.
其中所有不正确命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=1-ex的图象与x轴相交于点P,则曲线在点P处的切线的方程为(  )
A.y=-e•x+1B.y=-x+1C.y=-xD.y=-e•x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|m-1≤x≤2m+3},函数f(x)=lg(-x2+2x+8)的定义域为B.
(1)当m=2时,求A∪B、(∁RA)∩B;
(2)若A∩B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设F1,F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得$(\overrightarrow{OP}+\overrightarrow{O{F_2}})•\overrightarrow{{F_2}P}=0$,其中O为坐标原点,且$|\overrightarrow{P{F_1}}|=3|\overrightarrow{P{F_2}}|$,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.$\frac{{\sqrt{10}}}{2}$D.$\frac{5}{2}$

查看答案和解析>>

同步练习册答案