精英家教网 > 高中数学 > 题目详情
10.已知$\frac{π}{6}$<α<$\frac{2π}{3}$,cos(α+$\frac{π}{3}$)=m(m≠0),则tan($\frac{2}{3}$π-α)-$\frac{\sqrt{{1-m}^{2}}}{m}$.

分析 由条件利用同角三角函数的基本关系求得tan(α+$\frac{π}{3}$)的值,再利用诱导公式求得tan($\frac{2π}{3}$-α)的值.

解答 解:由$\frac{π}{6}$<α<$\frac{2π}{3}$,可得α+$\frac{π}{3}$∈($\frac{π}{2}$,π),又cos(α+$\frac{π}{3}$)=m<0,
∴sin(α+$\frac{π}{3}$)=$\sqrt{{1-cos}^{2}(α+\frac{π}{3})}$=$\sqrt{{1-m}^{2}}$,∴tan(α+$\frac{π}{3}$)=$\frac{\sqrt{{1-m}^{2}}}{m}$,
∴tan($\frac{2π}{3}$-α)=tan[π-(α+$\frac{π}{3}$)]=-tan(α+$\frac{π}{3}$)=-$\frac{\sqrt{{1-m}^{2}}}{m}$,
故答案为:-$\frac{\sqrt{{1-m}^{2}}}{m}$.

点评 本题主要考查同角三角函数的基本关系,诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.对于给定的正数K,定义函${f_K}(x)=\left\{\begin{array}{l}f(x),f(x)≤K\\ K,f(x)>K\end{array}\right.$.已知函数$f(x)={(\frac{1}{3})^{{x^2}-4x}}(0≤x<5)$,对其定义域内的任意x,恒有fk(x)=f(x),则(  )
A.K的最小值为$\frac{1}{243}$B.K的最大值为$\frac{1}{243}$C.K的最小值为81D.K的最大值为81

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在某种新型材料的研制中,实验人员获得了下列一组实验数据.现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是(  )
x23456
y0.971.591.982.352.61
A.y=log2xB.y=2xC.$y=\frac{1}{2}({{x^2}-1})$D.y=2.61cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=loga(x+1)(0<a<1)函数y=g(x)图象与函数f(x)的图象关于原点对称.
(1)写出函数g(x)的解析式;
(2)判断函数f(x)-g(x)的奇偶性,并说明理由;
(3)若x∈[0,1)时,总有f(x)+g(x)≤m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.sin75°cos30°-sin15°sin150°的值等于(  )
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知$\frac{3a}{2}$+b=1,求$\frac{{9}^{a}•{3}^{b}}{\sqrt{{3}^{a}}}$的值.
(2)化简($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$•$\frac{(\sqrt{4a{b}^{-1}})^{3}}{0.{1}^{-2}({a}^{3}{b}^{-4})^{\frac{1}{2}}}$(a>0,b>0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=3x
(1)求f(log3$\frac{1}{5}$)的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)求函数f(x)=cosx(x∈[$\frac{π}{4}$,$\frac{3}{2}$π])的值域;
(2)设f(x)=sin(cosx)(0≤x≤π),求[f(x)]max和[f(x)]min

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i为虚数单位,若复数z满足(z+2)(1-i3)=2,则z的共扼复数在复平面上对应的点的坐标是(  )
A.(1,1)B.(-1,1)C.(1,-1)D.(-1,-1)

查看答案和解析>>

同步练习册答案