如图,已知抛物线的焦点为F,过F的直线交抛物线于M、N两点,其准线与x轴交于K点.
(1)求证:KF平分∠MKN;
(2)O为坐标原点,直线MO、NO分别交准线于点P、Q,求的最小值.
(1)见解析;(2)8.
【解析】
试题分析:(1)只需证,设出M,N两点坐标和直线MN方程,再把直线方程与抛物线方程联立,由韦达定理可得证;(2)由(1)设出的M,N两点坐标分别先求出P、Q两点坐标,还是把设出的直线MN方程与抛物线方程联立,由韦达定理把表示出来,再根据直线MN的倾斜角的范围求的最小值.
试题解析:(1)抛物线焦点坐标为,准线方程为. 2分
设直线MN的方程为。设M、N的坐标分别为
由, ∴. 4分
设KM和KN的斜率分别为,显然只需证即可. ∵,
∴ , 6分
(2)设M、N的坐标分别为,由M,O,P三点共线可求出P点的坐标为,由N,O,Q三点共线可求出Q点坐标为, 7分
设直线MN的方程为。由
∴则
9分
又直线MN的倾斜角为,则
∴ .10分
同理可得. 13分
(时取到等号) . 15分
考点:1、抛物线的方程及性质;2、直线与曲线相交的性质.
科目:高中数学 来源: 题型:
(1)求证:A、F1、B、F2四点共圆;
(2)以BF1为直径,作半圆O1,AF切半圆于E,交F1B延长线于F,求cosF的值.
图20
查看答案和解析>>
科目:高中数学 来源:2013-2014学年山西省高三上学期期中考试理科数学试卷(解析版) 题型:解答题
如图已知抛物线的焦点坐标为,过的直线交抛物线于两点,直线分别与直线:相交于两点.
(1)求抛物线的方程;
(2)证明△ABO与△MNO的面积之比为定值.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年陕西省西安市高三下学期期中考试理科数学试卷(解析版) 题型:解答题
如图,已知抛物线的焦点为,过焦点且不平行于轴的动直线交抛物线于,两点,抛物线在、两点处的切线交于点.
(Ⅰ)求证:,,三点的横坐标成等差数列;
(Ⅱ)设直线交该抛物线于,两点,求四边形面积的最小值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年江苏省盐城市高三摸底考试数学卷 题型:解答题
(本小题满分16分)
如图,已知抛物线的焦点为,是抛物线上横坐标为8且位于轴上方的点. 到抛物线准线的距离等于10,过作垂直于轴,垂足为,的中点为(为坐标原点).
(Ⅰ)求抛物线的方程;
(Ⅱ)过作,垂足为,求点的坐标;
(Ⅲ)以为圆心,4为半径作圆,点是轴上的一个动点,试讨论直线与圆的位置关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com