精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,f′(x)为函数f(x)的导函数.

(1)若F(x)=f(x)+b,函数F(x)在x=1处的切线方程为2x+y﹣1=0,求a,b的值;
(2)若f′(x)≤﹣x+ax恒成立,求实数a的取值范围.

【答案】
(1)解:∵函数

∴F′(x)=lnx+x﹣ax2

∵函数F(x)在x=1处的切线方程为2x+y﹣1=0,

∴F′(1)=﹣2,F(1)=﹣1,

∴1﹣a=﹣2,﹣1+ +b=﹣1,

∴a=3,b=


(2)解:lnx+x﹣ax2≤﹣x+ax,

∴a≥

设g(x)= ,则g′(x)=

又h(x)=1﹣lnx﹣x,则h′(x)=﹣ ﹣1<0

又因为h(1)=0,所以(0,1),h(x)>0,(1,+∞),h(x)<0,

∴g(x)= 在(0,1)上单调递增,(1,+∞)上单调递减,

∴g(x)max=1,

∴a≥1.


【解析】(1)求导数,利用函数F(x)在x=1处的切线方程为2x+y﹣1=0,F′(1)=﹣2,F(1)=﹣1,即可求a,b的值;(2)若f′(x)≤﹣x+ax恒成立,a≥ ,求出右边的最大值,即可求实数a的取值范围.
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,半径为2的半圆有一内接梯形ABCD,它的下底AB是⊙O的直径,上底CD的端点在圆周上.若双曲线以A、B为焦点,且过C、D两点,则当梯形ABCD的周长最大时,双曲线的实轴长为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正数数列{xn}满足x1= ,xn+1= ,n∈N*
(1)求x2 , x4 , x6
(2)猜想数列{x2n}的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ex , g(x)=x+1.
(1)证明:f(x)≥g(x);
(2)求y=f(x),y=g(x)与x=﹣1所围成的封闭图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是
①任意x∈R,都有3x>2x
②若a>0,且a≠1,M>0,N>0,则有loga(M+N)=logaMlogaN;
的最大值为1;
④在同一坐标系中,y=2x 的图象关于y轴对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=esinx+e﹣sinx(x∈R),则下列说法不正确的是( )
A.f(x)为R上偶函数
B.π为f(x)的一个周期
C.π为f(x)的一个极小值点
D.f(x)在区间 上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (0<x<π),g(x)=(x﹣1)lnx+m(m∈R)
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求证:1是g(x)的唯一极小值点;
(Ⅲ)若存在a,b∈(0,π),满足f(a)=g(b),求m的取值范围.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义域为R的偶函数,当x≥0时,f(x)=
(1)求x<0时,f(x)的解析式;
(2)画出函数f(x)在R上的图象;
(3)结合图象写出f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数f(x)= x2+ax﹣2a2lnx,(a≠0). (I)求f(x)的单调区间;
(II)若f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案