精英家教网 > 高中数学 > 题目详情
设向量
a
=(sin2θ,cosθ),
b
=(cosθ,1),则“
a
b
”是“tanθ=
1
2
”成立的
 
条件 (选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据向量平行的坐标关系,结合充分条件和必要条件的定义进行判断即可.
解答: 解:若
a
b
,则sin2θ-cosθcosθ=0,
即2sinθcosθ-cosθcosθ=0,
即cosθ(2sinθ-cosθ)=0,
则cosθ=0或tanθ=
1
2

a
b
”是“tanθ=
1
2
”成立必要不充分条件,
故答案为:必要不充分.
点评:本题主要考查充分条件和必要条件的判断,根据向量平行的坐标公式是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若正实数x,y满足条件ln(x+y)=0,则
2x+y
xy
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各组中,两个集合相等的是(  )
A、M={(1,2)},N={(2,1)}
B、M={1,2},N={(1,2)}
C、M={x|x=2k+1,k∈Z},N={x|x=2k-1,k∈Z}
D、M={(x,y)|
y-1
x-2
=1},N={(x,y)|y-1=x-2}

查看答案和解析>>

科目:高中数学 来源: 题型:

给出数表:请在其中找出5个不同的数,使它们由小到大能构成等比数列,则这5个数依次可以说是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
12
x3-
1
4
x2+cx+d(c,d∈R),满足f(0)=0,f′(1)=0
(1)求c,d的值;
(2)若h(x)=
3
4
x2-bx+
b
2
-
1
4
,解不等式f′(x)+h(x)<0;
(3)是否存在实数m,使函数g(x)=f′(x)-mx在区间[m,m+2]上有最小值-5?若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sin(ωx+
π
6
)(ω>0)
图象的两条相邻的对称轴之间的距离为
π
2
,且该函数图象关于点(x0,0)成中心对称,x0∈[0,
π
2
]
,则x0=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

先将函数f(x)=sinxcosx的图象向左平移
π
4
个长度单位,再保持所有点的纵坐标不变,横坐标压缩为原来的
1
2
,得到函数g(x)的图象,则使g(x)为增函数的一个区间是(  )
A、(
π
4
π
2
B、(
π
2
,π)
C、(0,
π
2
D、(-π,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为实数的数列{an}为等比数列,且满足a1+a2=12,a2a4=1则a1=(  )
A、9或
1
16
B、
1
9
或16
C、
1
9
1
16
D、9或16

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:(1)2≤(1+
1
n
n<3,其中n∈N*
(2)证明:对任意非负整数n,33n-26n-1可被676整除.

查看答案和解析>>

同步练习册答案