【题目】已知a∈R,函数f(x)=log2( +a).
(1)当a=1时,解不等式f(x)<0;
(2)若a>0,不等式f(x)<log2(x+ )恒成立,求a的取值范围;
(3)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.
【答案】
(1)解:由log2( <0,得0< <1,
解得x∈(﹣∞,﹣1)
(2)解:由题意知 ,x+ >0,得x∈(0,+∞),
又由题意可得 ,即a ,
又a,x∈(0,+∞),∴a ,即0<a<4
(3)解: =(a﹣4)x+2a﹣5,(a﹣4)x2+(a﹣5)x﹣1=0,
当a=4时,x=﹣1,经检验,满足题意;
当a=3时,x1+x2=﹣1,经检验,满足题意;
当a≠3且a≠4时, ,x2=﹣1,x1=x2,
x1是原方程的解当且仅当 >0,即a>2;
x2是原方程的解当且仅当 >0,即a>1.
于是满足题意的a∈1,2].
综上,a的取值范围为(1,2]∪{3,4}
【解析】(1)由log2( <0,得0< <1,解得即可;(2)先满足定义域 ,x+ >0,再根据条件 ,即a ,(3)分类讨论,分a=4,a=3,a≠3且a≠4进行分析.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知平面直角坐标系,以为极点, 轴的非负半轴为极轴建立极坐标系, 点的极坐标为,曲线的参数方程为(为参数).
(1)写出点的直角坐标及曲线的直角坐标方程;
(2)若为曲线上的动点,求的中点到直线: 的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线在第一象限内的点到焦点的距离为.
(1)若,过点, 的直线与抛物线相交于另一点,求的值;
(2)若直线与抛物线相交于两点,与圆相交于两点, 为坐标原点, ,试问:是否存在实数,使得的长为定值?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,{bn}是各项为正的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求数列{an},{bn}的通项公式;
(2)求数列{an+bn} 的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,△ABC的三个顶点为A(﹣3,0),B(2,1),C(﹣2,3),求:
(Ⅰ)BC边上高线AH所在直线的方程;
(Ⅱ)若直线l过点B且横、纵截距互为相反数,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知几何体P﹣ABCD如图,面ABCD为矩形,面ABCD⊥面PAB,且面PAB为正三角形,若AB=2,AD=1,E、F分别为AC、BP中点,
(Ⅰ)求证:EF∥面PCD;
(Ⅱ)求直线BP与面PAC所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com