在四棱锥中,平面ABCD,底面ABCD是菱形,,.
(1)求证:平面PAC;
(2)若,求PB与AC所成角的余弦值;
(3)若PA=,求证:平面PBC⊥平面PDC
(1)由线线平行证得 (2) (3)求得从而证明.
解析试题分析:(1)证:因为四边形ABCD是菱形,
所以AC⊥BD.又因为PA⊥平面ABCD. 所以PA⊥BD,又AC∩PA=A
所以BD⊥平面PAC.
(2)解:过B作BM//AC交DA延长线于M,连接PM ∠PBM或其补角为所求
因为BM//AC AM//BC 所以四边形MACB为平行四边形 所以BM=AC=2,PB=PM=,所以
.
(3) 作BH⊥PC,连接HD
PA⊥平面ABCD,AD="AB" PB=PD,又CD="CB" PC="PC" △PBC≌△PDC
BH⊥PC HD⊥PC 因此∠BHD为二面角B-PC-D的平面角
因为AP= BC="2" 有BH=
所以 面PBC⊥面PDC.
考点:直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.
点评:本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的
夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算
求解能力.
科目:高中数学 来源: 题型:解答题
如图所示,已知AC ⊥平面CDE, BD ∥AC , 为等边三角形,F为ED边上的中点,且,
(Ⅰ)求证:CF∥面ABE;
(Ⅱ)求证:面ABE ⊥平面BDE;
(Ⅲ)求该几何体ABECD的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.
(Ⅰ)求证AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大小;
(Ⅲ)试在线段AC上确定一点P,使得PF与BC所成的角是60°.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。
求证:(1)PC⊥BC;
(2)求点A到平面PBC的距离。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在△中,,,点在上,交于,交于.沿将△翻折成△,使平面平面;沿将△翻折成△,使平面平面.
(Ⅰ)求证:平面.
(Ⅱ)设,当为何值时,二面角的大小为?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,底面为直角梯形,且,,侧面底面. 若.
(Ⅰ)求证:平面;
(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知两个正方形ABCD 和DCEF不在同一平面内,且平面ABCD ⊥平面DCEF,M,N分别为AB,DF的中点。
(1)求直线MN与平面ABCD所成角的正弦值;
(2)求异面直线ME与BN所成角的余弦值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com