【题目】已知函数().
(1)判断函数在区间上零点的个数;
(2)当时,若在()上存在一点,使得成立,求实数的取值范围.
【答案】(1)答案见解析;(2) .
【解析】试题分析: 令, ,得,
记, ,求得导数,利用函数单调性可以求得函数极值点以此判断函数在上的零点个数;
本题不宜分离,因此作差构造函数,利用分类讨论法求函数最小值,由于,所以讨论与的大小,分三种情况,当, 的最小值为, , 的最小值为,当, 的最小值为,解对应不等式即可。
解析:(1)令, ,得.
记, ,则,
当时, ,
当时, ,
由此可知在区间上单调递减,在区间上单调递增,
且, .
又,
故当时, 在区间上无零点.
当或时, 在区间上恰有一个零点.
当时, 在区间上有两个零点.
(2)在区间()上存在一点,使得成立等价于函数在区间上的最小值小于零.
.
①当,即时, 在区间上单调递减,所以的最小值为,
由,可得,
∵,∴.
②当,即时, 在区间上单调递增,所以的最小值为,
由,可得.
③当,即时,可得的最小值为,
∵,∴, ,
此时不成立.
综上所述,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知a>0,a≠1,设p:函数y=loga(x+1)在(0,+∞)上单调递减;q:曲线y=x2+(2a﹣3)x+1与x轴交于不同的两点.如果p且q为假命题,p或q为真命题,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知单调递增的等差数列{an},满足|a10a11|>a10a11 , 且a102<a112 , Sn为其前n项和,则( )
A.a8+a12>0
B.S1 , S2 , …S19都小于零,S10为Sn的最小值
C.a8+a13<0
D.S1 , S2 , …S20都小于零,S10为Sn的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,平面平面,// ,,
,且,.
(1)求证:平面;
(2)求和平面所成角的正弦值;
(3)在线段上是否存在一点使得平面平面,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax3+bx+c在点x=2处取得极值c﹣16.
(1)求a,b的值;
(2)若f(x)有极大值28,求f(x)在[﹣3,3]上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马, 田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com