精英家教网 > 高中数学 > 题目详情

【题目】正方形与梯形所在平面互相垂直,,点中点 .

(1)求证:平面

(2)求三棱锥的体积.

【答案】(1)见解析;(2)

【解析】试题分析:(1)证明线面平行,构造平行四边形ABMN先得到线线平行,再得到线面平行。(2)原棱锥的体积不好求转而去求等体积的VB﹣DEM,

解析:

(Ⅰ)证明:取ED的中点N,连接MN.

又∵点M是EC中点.

∴MN∥DC,MN=

而AB∥DC,AB=DC.

∴四边形ABMN是平行四边形.

∴BM∥AN.

而BM平面ADEF,AN平面ADEF,

∴BM∥平面ADEF.

(Ⅱ)解:∵M为EC的中点,

∵AD⊥CD,AD⊥DE,且DE与CD相交于D

∴AD⊥平面CDE.

∵AB∥CD,

∴三棱锥B﹣DME的高=AD=2,

∴VM﹣BDE=VB﹣DEM

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程选讲
在平面直角坐标系xOy中,曲线C的参数方程为 (a>0,β为参数),以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程ρcos(θ﹣ )=
(Ⅰ)若曲线C与l只有一个公共点,求a的值;
(Ⅱ)A,B为曲线C上的两点,且∠AOB= ,求△OAB的面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法正确的是(
A.命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”
B.“若x+y=0,则x,y互为相反数”的逆命题为真命题
C.命题“x∈R,使得2x2﹣1<0”的否定是:“x∈R,均有2x2﹣1<0”
D.命题“若cosx=cosy,则x=y”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司制定了一个激励销售人员的奖励方案:当销售利润不超过15万元时,按销售利润的进行奖励;当销售利润超过15万元时,若超过部分为A万元,则超出部分按进行奖励,没超出部分仍按销售利润的进行奖励记奖金总额为单位:万元,销售利润为单位:万元

1写出该公司激励销售人员的奖励方案的函数表达式;

2如果业务员老张获得万元的奖金,那么他的销售利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的一个焦点与抛物线 的焦点相同,F1 , F2为椭圆的左、右焦点.M为椭圆上任意一点,△MF1F2面积的最大值为4

(1)求椭圆C的方程;
(2)设椭圆C上的任意一点N(x0 , y0),从原点O向圆N:(x﹣x02+(y﹣y02=3作两条切线,分别交椭圆于A,B两点.试探究|OA|2+|OB|2是否为定值,若是,求出其值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

已知圆满足:

y轴所得弦长为2

x轴分成两段圆弧,其弧长的比为31

圆心到直线lx-2y=0的距离为,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且(c﹣2a) =c
(1)求B的大小;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若对任意的x∈R,都有f(x)≤f(B),求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2x﹣cosx,{an}是公差为 的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2﹣a1a5=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数 的图象向左平移 个单位,得到函数g(x)的图象,则下列关于g(x)叙述正确的是(
A.g(x)的最小正周期为2π
B.g(x)在 内单调递增
C.g(x)的图象关于 对称
D.g(x)的图象关于 对称

查看答案和解析>>

同步练习册答案