精英家教网 > 高中数学 > 题目详情
13.抛物线x=4y2的焦点坐标是(  )
A.(0,1)B.(0,-1)C.$({-\frac{1}{16},0})$D.$({\frac{1}{16},0})$

分析 根据题意,将抛物线的方程变形可得其标准方程,分析可得其焦点在x轴上,且p=$\frac{1}{4}$,由焦点坐标公式计算可得答案.

解答 解:根据题意,抛物线的方程为x=4y2,则其标准方程为y2=$\frac{1}{4}$x,
分析可得:其焦点在x轴上,且p=$\frac{1}{4}$,
故其焦点坐标为($\frac{1}{16}$,0);
故选:D.

点评 本题考查抛物线的几何性质,注意要先将抛物线的方程变形为标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.

(1)求直方图中x的值.
(2)求月平均用电量不大于220度的居民有多少户.
(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了考核某特警部队的应急反应能力,拟准备把特警队员从一目标处快速运送到另一目标处.通过测角仪观测到观测站C在目标A南偏西25°的方向上,B、D在A出发的一条南偏东35°走向的公路上(如图),测得C、B相距31千米,D、B相距20千米,C、D相距21千米,求A、D之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,底面ABCD为梯形,AD∥BC,AB=BC=CD=1,DA=2,DP⊥平面ABP,O,M分别是AD,PB的中点.
(Ⅰ)求证:PD∥平面OCM;
(Ⅱ)若AP与平面PBD所成的角为60°,求线段PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}是等差数列,前n项和Sn,若S20>0,S21<0,那么Sn取得最大值时n=(  )
A.20B.21C.11D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|ax2+x-3=0},B={x|3≤x<7},若A∩B≠∅,则实数a的取值集合为(  )
A.$[-\frac{1}{12},-\frac{4}{49})$B.$[-\frac{1}{12},0]$C.$(-\frac{4}{49},0]$D.$[-\frac{4}{49},0]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.球O与锐二面角α-l-β的两半平面相切,两切点间的距离为$\sqrt{3}$,O点到交线l的距离为2,则球O的表面积为(  )
A.$\frac{4π}{3}$B.C.12πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在正方形OABC内任取一点,取到函数$y=\sqrt{x}$的图象与x轴正半轴之间
(阴影部分)的点的概率等于$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.(x-2y+3z)7在展开式中,x2y3z2项的系数为-15120.

查看答案和解析>>

同步练习册答案