精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=3sinx﹣πx,命题p:x∈(0, ),f(x)<0,则(
A.p是假命题,¬p:?x∈(0, ),f(x)≥0
B.p是假命题,¬p:?x0∈(0, ),f(x0)≥0
C.p是真命题,¬p:?x∈(0, ),f(x)>0
D.p是真命题,¬p:?x0∈(0, ),f(x0)≥0

【答案】D
【解析】解:由三角函数线的性质可知,当x∈(0, )时,sinx<x
∴3sinx<3x<πx
∴f(x)=3sinx﹣πx<0
即命题p:x∈(0, ),f(x)<0为真命题
根据全称命题的否定为特称命题可知¬p:x0∈(0, ),f(x0)≥0
故选D
【考点精析】通过灵活运用复合命题的真假,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一台机器由于使用时间较长,生产的零件有一些缺损.按不同转速生产出来的零件有缺损的统计数据如下表所示:

转速x(转/秒)

16

4

12

8

每小时生产有缺损零件数y(个)

11

9

8

5

(1)作出散点图;

(2)如果yx线性相关,求出回归直线方程;

(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a>0,b>0,则称 为a,b的调和平均数.如图,点C为线段AB上的点,且AC=a,BC=b,点O为线段AB中点,以AB为直径做半圆,过点C作AB的垂线交半圆于D,连结OD,AD,BD.过点C作OD的垂线,垂足为E,则图中线段OD的长度是a,b的算术平均数,那么图中表示a,b的几何平均数与调和平均数的线段,以及由此得到的不等关系分别是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点.

(1)求椭圆方程;

(2)设不过原点O的直线,与该椭圆交于PQ两点,直线OPOQ的斜率依次为,满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知抛物线C1:x2=2py的焦点在抛物线C2,点P是抛物线C1上的动点.

(1)求抛物线C1的方程及其准线方程;

(2)过点P作抛物线C2的两条切线,M,N分别为两个切点,设点P到直线MN的距离为d,求d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的导函数为f′(x),对任意的x∈R,都有2f′(x)>f(x)成立,则(  )

A. 3f(2ln 2)>2f(2ln 3)

B. 3f(2ln 2)<2f(2ln 3)

C. 3f(2ln 2)=2f(2ln 3)

D. 3f(2ln 2)与2f(2ln 3)的大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C: =1(a>b>0)的离心率为 ,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.

(1)求椭圆C的方程;
(2)求 的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR||OS|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=-x3+2ax2-3a2x(a∈R且a≠0).

(1)当a=-1时,求曲线y=f(x)在点(-2,f(-2))处的切线方程;

(2)当a>0时,求函数y=f(x)的单调区间和极值;

(3)当x∈[2a,2a+2]时,不等式|f′(x)|≤3a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价x(元)

9

9.2

9.4

9.6

9.8

10

销量y(件)

100

94

93

90

85

78

(1)求回归直线方程求回归直线方程.

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

同步练习册答案