精英家教网 > 高中数学 > 题目详情
对于实数a和b,定义运算“?”:a?b=
a,a-b≤1
b,a-b>1
,设函数f(x)=(x2-2)?(x-1),x∈R,若函数y=f(x)-c的图象与x轴恰有两个公共点,则实数c的取值范围是
(-2,1]∪(1,2]
(-2,1]∪(1,2]
分析:根据定义的运算法则化简函数f(x)=(x2-2)?(x-1),的解析式,并画出f(x)的图象,函数y=f(x)-c的图象与x轴恰有两个公共点转化为y=f(x),y=c图象的交点问题,结合图象求得实数c的取值范围.
解答:解:∵a?b=
a,a-b≤1
b,a-b>1
,∴函数f(x)=(x2-2)?(x-1)=
x2-2 ,  -1≤x≤2
x-1 ,  x<-1或 x>2

由图可知,当c∈(-2,-1]∪(1,2],函数f(x)与y=c的图象有两个公共点,
∴c的取值范围是 (-2,-1]∪(1,2],
故答案为 (-2,1]∪(1,2].
点评:本题主要考查方程的根的存在性及个数判断,二次函数的图象特征、函数与方程的综合运用,及数形结合的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于实数a和b,定义运算“*”a*b=
a2-ab,a<b
b2-ab,a>b
设f(x)=(2x-1)*(x-1),且关于x的方程f(x)=a(a∈R)恰有三个互不相等的实数根,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建)对于实数a和b,定义运算“﹡”:a*b=
a2-ab,a≤b
b2-ab,a>b
设f(x)=(2x-1)﹡(x-1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是
(
1-
3
16
,0)
(
1-
3
16
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于实数a和b,定义运算“*”:a*b=
a2-ab,a≤b
b2-ab,a>b
,设f(x)=(2x-1)*(x-1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则实数m的取值范围是
(0,
1
4
)
(0,
1
4
)
;x1+x2+x3的取值范围是
(
5-
3
4
,1)
(
5-
3
4
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于实数a和b,定义运算“*”:a*b=
-a2+2ab-1,a≤b
b2-ab,a>b.
设f(x)=(2x-1)*(x-1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1•x2•x3的取值范围是(  )
A、(-
1
32
,0)
B、(-
1
16
,0)
C、(0,
1
32
)
D、(0,
1
16
)

查看答案和解析>>

同步练习册答案