精英家教网 > 高中数学 > 题目详情
18.已知sinα+sin(α+β)+cos(α+β)=$\sqrt{3}$,β∈[$\frac{π}{4}$,π],求β的值.

分析 把已知等式中的sinα用α+β和β的三角函数表示,然后利用辅助角公式化积,再由三角函数的有界性可得cosβ≥sinβ,又β∈[$\frac{π}{4}$,π],可得cosβ≤sinβ,从而得到sinβ=cosβ,即$β=\frac{π}{4}$.

解答 解:∵sinα=sin[(α+β)-β]=sin(α+β)cosβ-cos(α+β)sinβ,
∴$\sqrt{3}$=sinα+sin(α+β)+cos(α+β)
=(1+cosβ)sin(α+β)+(1-sinβ)cos(α+β)
=$\sqrt{(1+cosβ)^{2}+(1-sinβ)^{2}}sin(α+β+$φ),
∵|sin(α+β+φ)|≤1,
∴$\sqrt{3}$$≤\sqrt{(1+cosβ)^{2}+(1-sinβ)^{2}}=\sqrt{3+2cosβ-2sinβ}$,
∴cosβ≥sinβ,
又β∈[$\frac{π}{4}$,π],∴cosβ≤sinβ,
则sinβ=cosβ,即$β=\frac{π}{4}$.

点评 本题考查两角和与差的正弦、余弦,考查了学生的灵活变形能力,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-alnx(a∈R).
(1)求函数h(x)=f(x)+$\frac{1+a}{x}$的单调区间;
(2)若g(x)=-$\frac{1+a}{x}$在[1,e](e=2.71828…)上存在一点x0,使得f(x0)≤g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{2}$sin($\frac{5π}{4}$-2x)+1.
(1)求它的振幅、最小正周期、初相;
(2)画出函数y=f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC三个顶点的坐标分别为A(-2,3),B(1,2),C(5,4),求:
(1)向量$\overrightarrow{BA}$与向量$\overrightarrow{BC}$的坐标;
(2)角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.sin($\frac{π}{4}$+α)sin($\frac{π}{4}$-α)的化简结果为(  )
A.cos2αB.$\frac{1}{2}$cos2αC.sin2αD.$\frac{1}{2}$sin2α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}的前n项和为Sn,已知a1=1且an+1=1-3Sn
(1)求{an}的通项公式;
(2)若数列{bn}满足anbn=n,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2sinωx(0<ω<1)在[0,$\frac{π}{2}$]上的最大值为$\sqrt{2}$,当把f(x)的图象上的所有点向右平移φ(0<φ<$\frac{π}{2}$)个单位后,得到图象对应的函数g(x)的图象关于直线x=$\frac{7π}{6}$对称.
(1)求函数g(x)的解析式:
(2)在△ABC中.一个内角A,B,C所对的边分别是a,b,c.已知g(x)在y轴右侧的第一个零点为C,若c=4,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知指数函数y=ax的图象经过点(2,3),则函数的解析式是y=$\sqrt{3}$x,定义域是R,值域是(0,+∞),在定义域内是增函数(用“增”“减”填空)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示,两射线OA与OB交于O,则下列选项中哪些向量的终点落在阴影区域内(不含边界)
①$\overrightarrow{OA}$+2$\overrightarrow{OB}$; ②$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$  ③$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$  ④$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{1}{5}$$\overrightarrow{OB}$.
A.①②B.①②④C.①②③D.③④

查看答案和解析>>

同步练习册答案