精英家教网 > 高中数学 > 题目详情
9.已知函数$f(x)=\frac{{-{3^x}+a}}{{{3^{x+1}}+b}}$.
(1)当a=b=1时,求满足f(x)=3x的x的取值;
(2)若函数f(x)是定义在R上的奇函数存在t∈R,不等式f(t2-2t)<f(2t2-k)有解,求k的取值范围.

分析 (1)根据3x+1=3•3x,可将方程f(x)=3x转化为一元二次方程:3•(3x2+2•3x-1=0,再根据指数函数范围可得${3^x}=\frac{1}{3}$,解得x=-1,
(2)先根据函数奇偶性确定a,b值:a=1,b=3,再利用单调性定义确定其单调性:在R上递减.最后根据单调性转化不等式f(t2-2t)<f(2t2-k)为t2-2t>2t2-k即t2+2t-k<0在t∈R时有解,根据判别式大于零可得k的取值范围.

解答 解:(1)由题意,当a=b=1时,$\frac{{-{3^x}+1}}{{{3^{x+1}}+1}}={3^x}$,化简得3•(3x2+2•3x-1=0
解得${3^x}=-1(舍)或{3^x}=\frac{1}{3}$,所以x=-1.
(2)因为f(x)是奇函数,所以f(-x)+f(x)=0,
所以$\frac{{-{3^x}+a}}{{{3^{-x+1}}+b}}+\frac{{-{3^x}+a}}{{{3^{x+1}}+b}}=0$化简并变形得:(3a-b)(3x+3-x)+2ab-6=0
要使上式对任意的x成立,则3a-b=0且2ab-6=0解得:$\left\{{\begin{array}{l}{a=1}\\{b=3}\end{array}或\left\{{\begin{array}{l}{a=-1}\\{b=-3}\end{array}}\right.}\right.$,
因为f(x)的定义域是R,所以$\left\{{\begin{array}{l}{a=-1}\\{b=-3}\end{array}}\right.$舍去,
所以a=1,b=3,所以$f(x)=\frac{{-{3^x}+1}}{{{3^{x+1}}+3}}$,
①$f(x)=\frac{{-{3^x}+1}}{{{3^{x+1}}+3}}=\frac{1}{3}({-1+\frac{2}{{{3^x}+1}}})$
对任意x1,x2∈R,x1<x2有:$f({x_1})-f({x_2})=\frac{1}{3}({\frac{2}{{{3^{x_1}}+1}}-\frac{2}{{{3^{x_2}}+1}}})=\frac{2}{3}({\frac{{{3^{x_2}}-{3^{x_1}}}}{{({{3^{x_1}}+1})({{3^{x_2}}+1})}}})$
因为x1<x2,所以${3^{x_2}}-{3^{x_1}}>0$,所以f(x1)>f(x2),
因此f(x)在R上递减.因为f(t2-2t)<f(2t2-k),所以t2-2t>2t2-k,
即t2+2t-k<0在t∈R时有解
所以△=4+4t>0,解得:t>-1,
所以k的取值范围为(-1,+∞)

点评 本题主要考查函数奇偶性的应用,根据函数奇偶性的定义以及函数奇偶性和单调性的关系将不等式进行转化是解决本题的关键.综合性较强,运算量较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设集合A={x|-1<x≤2},Z为整数集,则集合A∩Z中元素的个数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知定义在R上的函数f(x)满足f(x)=f(4-x),且当x≥2时,f(x)=4x+2x-6,则f(x)在区间[0,4]上的最大值与最小值分别为(  )
A.266,14B.256,14C.256,-$\frac{21}{4}$D.266,-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为(  )
A.($\frac{1}{4}$,-1)B.($\frac{1}{4}$,1)C.($\frac{1}{2}$,-1)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l1:x+my+6=0.l2:(m-2)x+3y+2m=0,求实数m的值使得:
(1)l1,l2相交;(2)l1⊥l2;(3)l1∥l2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a=0.5${\;}^{\frac{1}{2}}$,b=0.9${\;}^{\frac{1}{2}}$,c=log50.3,则a,b,c的大小关系是(  )
A.a>c>bB.c>a>bC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x-$\frac{1}{x}$.
(1)利用定义证明:函数f(x)在区间(0,+∞)上为增函数;
(2)当x∈(0,1)时,t•f(2x)≥2x-1恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.幂函数f(x)=(m2-m-1)x${\;}^{{m}^{2}-2m-3}$在(0,+∞))上是减函数,则实数m 值为(  )
A.2B.-1C.2或-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若存在两个正实数x,y,使得等式2x+a(y-2ex)(lny-lnx)=0成立,则实数a的取值范围为(  )
A.$[{-\frac{1}{2},\frac{1}{e}}]$B.$({0,\frac{2}{e}}]$C.$({-∞,0})∪[{\frac{2}{e},+∞})$D.$({-∞,-\frac{1}{2}})∪[{\frac{1}{e},+∞})$

查看答案和解析>>

同步练习册答案