【题目】如图所示,在平面直角坐标系中,已知椭圆的离心率为,为椭圆上位于第一象限上的点,为椭圆的上顶点,直线与轴相交于点,,的面积为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线过椭圆的右焦点,且与椭圆相交于、两点(、在直线的同侧),若,求直线的方程.
【答案】(Ⅰ)1;(Ⅱ)x﹣y﹣20.
【解析】
(Ⅰ)运用椭圆的离心率公式和、、的关系,结合三角形的面积公式和线段的中点坐标公式,解方程可得、,进而得到所求椭圆方程;
(Ⅱ)求得的坐标和右焦点坐标,运用等腰三角形的性质,可得线、的斜率互为相反数,设直线,联立椭圆方程,运用韦达定理,求得,同理可得,再由直线的斜率公式,化简整理,即可得到,进而得到所求直线方程.
(Ⅰ)椭圆的离心率为,
即,可得,,
由,可得为的中点,
所以,即,
所以,即,,,
所以椭圆的方程为1;
(Ⅱ)由(Ⅰ)可得,右焦点为,
因为,所以,所以,
又,直线、的斜率互为相反数,
设直线,联立椭圆方程,
消去,可得,
设、,则,所以,
将换为,同理可得,,,
,
所以直线的方程为,即.
科目:高中数学 来源: 题型:
【题目】如图,已知函数的图象与y轴交于点,与x轴交于A,B两点,其中,.
(1)求函数的解析式;
(2)将函数图象上所有点的横坐标缩短为原来的(纵坐标不变),得到函数的图象,求函数的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知等边的边长为3,点,分别是边,上的点,且,.如图2,将沿折起到的位置.
(1)求证:平面平面;
(2)给出三个条件:①;②二面角大小为;③.在这三个条件中任选一个,补充在下面问题的条件中,并作答:在线段上是否存在一点,使直线与平面所成角的正弦值为,若存在,求出的长;若不存在,请说明理由.注:如果多个条件分别解答,按第一个解答给分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,CM,CN为某公园景观湖胖的两条木栈道,∠MCN=120°,现拟在两条木栈道的A,B处设置观景台,记BC=a,AC=b,AB=c(单位:百米)
(1)若a,b,c成等差数列,且公差为4,求b的值;
(2)已知AB=12,记∠ABC=θ,试用θ表示观景路线A-C-B的长,并求观景路线A-C-B长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设双曲线的左、右焦点分别为F1,F2,过点F2的直线分别交双曲线左、右两支于点P,Q,点M为线段PQ的中点,若P,Q,F1都在以M为圆心的圆上,且,则双曲线C的离心率为( )
A.B.2C.D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年上半年,随着新冠肺炎疫情在全球蔓延,全球超过个国家或地区宣布进人紧急状态,部分国家或地区直接宣布“封国”或“封城”,随着国外部分活动进入停摆,全球经济缺乏活力,一些企业开始倒闭,下表为年第一季度企业成立年限与倒闭分布情况统计表:
企业成立年份 | 2019 | 2018 | 2017 | 2016 | 2015 |
企业成立年限 | 1 | 2 | 3 | 4 | 5 |
倒闭企业数量(万家) | 5.23 | 4.70 | 3.72 | 3.12 | 2.42 |
倒闭企业所占比例 | 21.8% | 19.6% | 15.5% | 13.0% | 10.1% |
根据上表,给出两种回归模型:
模型①:建立曲线型回归模型,求得回归方程为;
模型②:建立线性回归模型.
(1)根据所给的统计量,求模型②中关于的回归方程;
(2)根据下列表格中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测年成立的企业中倒闭企业所占比例(结果保留整数).
回归模型 | 模型① | 模型② |
回归方程 | ||
参考公式:,;.
参考数据:,,,,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,斜率为的直线交抛物线于两点,已知点的横坐标比点的横坐标大4,直线交线段于点,交抛物线于点.
(1)若点的横坐标等于0,求的值;
(2)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)|2x﹣3|,g(x)|2x+a+b|.
(1)解不等式f(x)x2;
(2)当a0,b0时,若F(x)f(x)+g(x)的值域为[5,+∞),求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“2019曹娥江国际马拉松”在上虞举行,现要选派5名志愿者服务于四个不同的运动员救助点,每个救助点至少分配1人,若志愿者甲要求不到A救助点,则不同的分派方案有________种.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com