精英家教网 > 高中数学 > 题目详情
3.已知全集U={0,2,4,6,8,10},集合A={2,4,6},B={1},则(∁UA)∪B等于(  )
A.{0,1,8,10}B.{1,2,4,6}C.{0,8,10}D.

分析 根据全集U和集合A先求出集合A的补集,然后求出集合A的补集与集合B的并集即可.

解答 解:由全集U={0,2,4,6,8,10},集合A={2,4,6},
则CUA={0,8,10},
又因为集合B={1},
则(CUA)∪B={0,1,8,10}.
故选A.

点评 此题考查了补集及并集的运算,是一道基础题,学生在求补集时应注意全集的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.下列选项中,说法正确的个数是(  )
(1)命题“?x0∈R,${x_0}^2-{x_0}≤0$”的否定为“?x∈R,x2-x>0”;
(2)命题“在△ABC中,A>30°,则$sinA>\frac{1}{2}$”的逆否命题为真命题;
(3)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的充分必要条件;
(4)若统计数据x1,x2,…,xn的方差为1,则2x1,2x2,…,2xn的方差为2;
(5)若两个随机变量的线性相关性越强,则相关系数绝对值越接近1.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设圆x2+y2+4x-32=0的圆心为A,直线l过点B(2,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.
(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;
(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设三个数$\sqrt{(x-\sqrt{2})^{2}+{y}^{2}}$,$\sqrt{3}$,$\sqrt{(x+\sqrt{2})^{2}+{y}^{2}}$成等差数列,记(x,y)所对应点的曲线是C.
(1)求曲线C的方程;
(2)已知点M(1,0),点N(3,2),过点M任作直线l与曲线C相交于A,B两点,设直线AN,BN的斜率分别为k1,k2,问k1+k2是否为定值?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$+($\frac{1}{10}$)-20+(-$\frac{27}{8}$)${\;}^{\frac{1}{3}}$;
(2)$\frac{1}{2}$lg25+lg2-log29×log32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,值域为(0,+∞)的是(  )
A.y=$\sqrt{x}$B.$y=\frac{1}{{\sqrt{x}}}$C.$y=\frac{1}{x}$D.y=x2+x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=a•4x-a•2x+1+1-b(a>0)在区间[1,2]上有最大值9和最小值1
(1)求a,b的值;
(2)若不等式f(x)-k•4x≥0在x∈[-1,1]上有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知F1,F2是椭圆$\frac{x^2}{100}+\frac{y^2}{36}=1$的两个焦点,P是椭圆曲线上位于第一象限的点,且PF1⊥PF2,求P点坐标及△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.关于x的不等式ax2+bx+2>0的解集为{x|-1<x<2}则关于x的不等式bx2-ax-2>0的解集为(-2,1).

查看答案和解析>>

同步练习册答案