【题目】某公司为了应对金融危机,决定适当进行裁员,已知这家公司现有职工人(,且为10的整数倍),每人每年可创利100千元,据测算,在经营条件不变的前的提下,若裁员人数不超过现有人数的30%,则每裁员1人,留岗员工每人每年就能多创利1千元(即若裁员人,留岗员工可多创利润千元);若裁员人数超过现有人数的30%,则每裁员1人,留岗员工每人每年就能多创利2千元(即若裁员人,留岗员工可多创利润千元),为保证公司的正常运转,留岗的员工数不得少于现有员工人数的50%,为了保障被裁员工的生活,公司要付给被裁员工每人每年20千元的生活费.
(1)设公司裁员人数为,写出公司获得的经济效益(千元)关于的函数(经济效益=在职人员创利总额—被裁员工生活费);
(2)为了获得最大的经济效益,该公司应裁员多少人?
科目:高中数学 来源: 题型:
【题目】数列的前项1,3,7,,()组成集合,从集合中任取()个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,,,;时,,,,.
(1)当时,求,,,的值;
(2)证明:时集合的与时集合的(为以示区别,用表示)有关系式(,);
(3)试求(用表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合由满足下列两个条件的数列构成:①②存在实数使得对任意正整数都成立.
(1)现在给出只有5项的有限数列试判断数列是否为集合的元素;
(2)设数列的前项和为且若对任意正整数点均在直线上,证明:数列并写出实数的取值范围;
(3)设数列若数列没有最大值,求证:数列一定是单调递增数列。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F1、F2为双曲线(b>0)的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,且∠MF1F2=30°,圆O的方程是x2+y2=b2.
(1)求双曲线C的方程;
(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求的值;
(3)过圆O上任意一点Q作圆O的切线l交双曲线C于A、B两点,AB中点为M,求证:|AB|=2|OM|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】曲线的右焦点分别为,短袖长为,点在曲线上,直线上,且.
(1)求曲线的标准方程;
(2)试通过计算判断直线与曲线公共点的个数.
(3)若点在都在以线段为直径的圆上,且,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若正项数列满足:,则称此数列为“比差等数列”.
(1)试写出一个“比差等数列”的前项;
(2)设数列是一个“比差等数列”,问是否存在最小值,如存在,求出最小值;如不存在,请说明理由;
(3)已知数列是一个“比差等数列”,为其前项的和,试证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数、、,如果存在实数、使得,那么称为、的生成函数.
(1)若,,,则是否分别为、的生成函数?并说明理由;
(2)设,,,,生成函数,若不等式在上有解,求实数的取值范围;
(3)设,取,,生成函数图象的最低点坐标为,若对于任意正实数、且,试问是否存在最大的常数,使恒成立?如果存在,求出这个的值;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com