精英家教网 > 高中数学 > 题目详情
如图,已知椭圆过点,离心率为,左、右焦点分别为F1、F2。点P为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点。
(I)求椭圆的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2
(i)证明:
(ii)问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由。
解:(Ⅰ)因为椭圆过点
所以
又a2=b2+c2
所以
故所求椭圆方程为
(Ⅱ)(i)由于F1(-1,0)、F2(1,0),PF1、PF2的斜率分别为k1、k2,且点P不在x轴上
所以k1≠k2,k1≠0,k2≠0
又直线PF1,PF2的方程分别为y=k1(x+1),y=k2(x-1)
联立方程得
所以
由于点P在直线x+y=2上
所以
因此2k1k2+3k1-k2=0

结论成立;
(ii)设A(xA,yA),B(xB,yB),C(xC,yC) ,D(xD,yD
联立直线PF1与椭圆的方程得
化简得(2k12+1)x2+4k21x+2k21-2=0
因此
由于OA,OB的斜率存在
所以xA≠0,xB≠0
因此k12≠0,1
因此
                    
                    
                   
相似地可以得到

                                
若kOA+kOB+kOC+kOD=0,须有k1+k2=0或k1k2=1
①当k1+k2=0时,结合(i)的结论,可得k2=-2,所以解得点P的坐标为(0,2);
②当k1k2=1时,结合(i)的结论,解得k2=3或k2=-1(此时k1=-1,不满足k1≠k2,舍去),此时直线CD的方程为y=3(x-1),联立方程x+y=2得
因此
综上所述,满足条件的点P的坐标分别为(0,2),
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分12分)

如图,已知椭圆过点,两个焦点分别为为坐标原点,平行于的直线交椭圆于不同的两点

(Ⅰ)求椭圆的方程;

(Ⅱ)试问直线的斜率之和是否为定值,若为定值,求出以线段为直径且过点的圆的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届四川省高二5月月考考理科数学试卷(解析版) 题型:解答题

如图,已知椭圆过点,离心率为,左、右焦点分别为.点为直线上且不在轴上的任意一点,直线与椭圆的交点分别为为坐标原点.设直线的斜率分别为

(i)证明:

(ii)问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013届安徽省毫州市高二上学期质量检测理科数学 题型:解答题

如图,已知椭圆过点.,离心率为,左、右焦点分别为.点为直线上且不在轴上的任意一点,直线与椭圆的交点分别为为坐标原点.

(I)求椭圆的标准方程;

(II)设直线的斜线分别为.      证明:

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010年普通高等学校招生全国统一考试(山东卷)文科数学全解全析 题型:解答题

(本小题满分14分)

如图,已知椭圆过点(1,),离心率为 ,左右焦点分别为.点为直线上且不在轴上的任意一点,直线与椭圆的交点分别为为坐标原点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设直线斜率分别为.

(ⅰ)证明:

(ⅱ )问直线上是否存在一点,使直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(山东卷)解析版(文) 题型:解答题

 如图,已知椭圆过点(1,),离心率为 ,左右焦点分别为.点为直线上且不在轴上的任意一点,直线与椭圆的交点分别为为坐标原点.

    (Ⅰ) 求椭圆的标准方程;

   (Ⅱ)设直线斜率分别为

证明:

(ⅱ)问直线上是否存在一点

使直线的斜率

满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.

 

 

查看答案和解析>>

同步练习册答案