精英家教网 > 高中数学 > 题目详情
11.函数y=ln(x2-x)的定义域是(  )
A.(-∞,0]∪[1,+∞)B.(0,1)C.[0,1]D.(-∞,0)∪(1,+∞)

分析 利用对数的真数大于0,求解即可.

解答 解:函数y=ln(x2-x)有意义可得:x2-x>0,解得x∈(-∞,0)∪(1,+∞).
故选:D.

点评 本题考查函数的定义域的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若z是复数,且z2=-3+4i,则z的一个值为(  )
A.1-2iB.1+2iC.2-iD.2+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果sinθ<0,cosθ>0,则角θ所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将y=sin2x的图象向右平移φ单位(φ>0),使得平移后的图象过点$(\frac{π}{3},\frac{{\sqrt{3}}}{2})$,则φ的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A,B,C对应的边分别为a,b,c.已知3cos2A+3cosBcosC=3sinBsinC-sin2A.
(1)求 A;
(2)若b=5,S△ABC=5$\sqrt{3}$,求a和sin B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列说法及计算不正确的是①③.
①6名学生争夺3项冠军,冠军的获得情况共有36种.
②在某12人的兴趣小组中,有女生5人,现要从中任意选取6人参加2012年数学奥赛,用x表示这6人中女生人数,则P(X=3)=$\frac{C_5^3C_7^3}{{C_{12}^6}}$.
③|r|≤1,并且|r|越接近1,线性相关程度越弱;|r|越接近0,线性相关程度越强.
④${∫}_{a}^{b}$f(x)dx=${∫}_{a}^{c}$f(x)dx+${∫}_{c}^{b}$f(x)dx(a<c<b)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设实数a>1,b>1.则“a<b”是“lna-lnb>a-b”成立的充要条件.(请用“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中之一填空.)充要.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知扇形AOB,点C在弧AB上(异于A,B两点),线段AB与OC交与点M,设$\overrightarrow{OC}=t\overrightarrow{OA}+3t\overrightarrow{OB}({t≠0})$,$\overrightarrow{AM}=m\overrightarrow{AB}({m≠0})$,则m=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知用x升水清洗一次清洁度为c的受污物体,清洗后受污物体的清洁度为$\frac{x+c}{x+1}$,用y升水再次清洗该受污物体后的清洁度为$\frac{y{+3c}_{1}}{y+3}$,其中c1为首次清洗后的该物体的清洁度,现有一受污物体的清洁度为0.8,要求清洗后的清洁度不低于0.99.
(1)若只清洗一次,则至少需要多少升水?
(2)若清洗两次且每次用水量相等,则至少需要多少升?

查看答案和解析>>

同步练习册答案