精英家教网 > 高中数学 > 题目详情

【题目】已知向量,函数

1)求函数的最小正周期与图象的对称轴方程;

2)若,函数的最小值是,最大值是2,求实数的值.

【答案】1;(2)实数的值分别为2

【解析】

1)先由向量的数量积及三角恒等变换求出函数的解析式,再根据正弦函数的图象和性质,求出函数的最小正周期与图象的对称轴方程即可;

2)先根据的取值范围求出的取值范围,然后根据正弦函数的图象和性质求出函数的最值,最后根据已知条件列出方程组,解之即可得实数的值.

1)由题意得

所以函数的最小正周期

,解得

所以函数图象的对称轴方程为

2)因为,所以

因为

所以当,即时,函数取得最小值,最小值为,即

,即时,函数取得最大值,最大值为,即

所以

解得

故实数的值分别为2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图过抛物线的焦点的直线依次交拋物线及准线于点,若,且,则

A.2B.C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设以的边为长轴且过点的椭圆的方程为椭圆的离心率面积的最大值为所在的直线分别与直线相交于点.

1)求椭圆的方程;

2)设的外接圆的面积分别为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线方程为

1)求

2)函数图像与轴负半轴的交点为,且在点处的切线方程为,函数,求的最小值;

3)关于的方程有两个实数根,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学号为123的三位小学生,在课余时间一起玩“掷骰子爬楼梯”游戏,规则如下:投掷一颗骰子,将每次出现点数除以3,若学号与之同余(同除以3余数相同),则该小学生可以上2阶楼梯,另外两位只能上1阶楼梯,假定他们都是从平地(0阶楼梯)开始向上爬,且楼梯数足够多.

1)经过2次投掷骰子后,学号为1的同学站在第X阶楼梯上,试求X的分布列;

2)经过多次投掷后,学号为3的小学生能站在第n阶楼梯的概率记为,试求的值,并探究数列可能满足的一个递推关系和通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆的短轴长为2,离心率为

1)求椭圆E的标准方程;

2)若直线l与椭圆E相切于点P(点P在第一象限内),与圆相交于点AB,且,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为,把满足条件的所有数列构成的集合记为

1)若数列的通项为,则是否属于

2)若数列是等差数列,且,求的取值范围;

3)若数列的各项均为正数,且,数列中是否存在无穷多项依次成等差数列,若存在,给出一个数列的通项;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点在椭圆上,过点轴的垂线,垂足为,点满足,已知点的轨迹是过点的圆.

1)求椭圆的方程;

2)设直线与椭圆交于两点(轴的同侧),为椭圆的左、右焦点,若,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周礼夏官马质》中记载马量三物:一日戎马,二日田马,三日驽马,其意思为马按照品种可以分为三个等级,一等马为戎马,二等马为田马,三等马为驽马.假设在唐朝的某个王爷要将7匹马(戎马3匹,田马、驽马各2匹)赏赐给甲、乙、丙3人,每人至少2匹,则甲和乙都得到一等马的分法总数为_____

查看答案和解析>>

同步练习册答案