【题目】已知向量,,函数.
(1)求函数的最小正周期与图象的对称轴方程;
(2)若,,函数的最小值是,最大值是2,求实数,的值.
科目:高中数学 来源: 题型:
【题目】设以的边为长轴且过点的椭圆的方程为椭圆的离心率,面积的最大值为,和所在的直线分别与直线相交于点,.
(1)求椭圆的方程;
(2)设与的外接圆的面积分别为,,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在点处的切线方程为.
(1)求,;
(2)函数图像与轴负半轴的交点为,且在点处的切线方程为,函数,,求的最小值;
(3)关于的方程有两个实数根,,且,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学号为1,2,3的三位小学生,在课余时间一起玩“掷骰子爬楼梯”游戏,规则如下:投掷一颗骰子,将每次出现点数除以3,若学号与之同余(同除以3余数相同),则该小学生可以上2阶楼梯,另外两位只能上1阶楼梯,假定他们都是从平地(0阶楼梯)开始向上爬,且楼梯数足够多.
(1)经过2次投掷骰子后,学号为1的同学站在第X阶楼梯上,试求X的分布列;
(2)经过多次投掷后,学号为3的小学生能站在第n阶楼梯的概率记为,试求,,的值,并探究数列可能满足的一个递推关系和通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆的短轴长为2,离心率为.
(1)求椭圆E的标准方程;
(2)若直线l与椭圆E相切于点P(点P在第一象限内),与圆相交于点A,B,且,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前n项和为,把满足条件的所有数列构成的集合记为.
(1)若数列的通项为,则是否属于?
(2)若数列是等差数列,且,求的取值范围;
(3)若数列的各项均为正数,且,数列中是否存在无穷多项依次成等差数列,若存在,给出一个数列的通项;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动点在椭圆上,过点作轴的垂线,垂足为,点满足,已知点的轨迹是过点的圆.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点(,在轴的同侧),,为椭圆的左、右焦点,若,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《周礼夏官马质》中记载“马量三物:一日戎马,二日田马,三日驽马”,其意思为马按照品种可以分为三个等级,一等马为戎马,二等马为田马,三等马为驽马.假设在唐朝的某个王爷要将7匹马(戎马3匹,田马、驽马各2匹)赏赐给甲、乙、丙3人,每人至少2匹,则甲和乙都得到一等马的分法总数为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com