精英家教网 > 高中数学 > 题目详情

【题目】如图已知四棱锥P﹣ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点.

(1)若PD=1,求异面直线PB和DE所成角的余弦值.
(2)若二面角P﹣BF﹣C的余弦值为 ,求四棱锥P﹣ABCD的体积.

【答案】
(1)证明:E,F分别为棱BC,AD的中点,ABCD是边长为2的正方形

∴DF∥BE且DF=BE

∴DFBE为平行四边形

∴DE∥BF

∴∠PBF是PB与DE的所成角

△PBF中,BF= ,PF=, ,PB=3,

∴cos∠PBF=

∴异面直线PB和DE所成角的余弦值为


(2)解:如图,以D为原点,射线DA,DC,DP分别为x,y,z轴建立空间直角坐标系.设PD=a,

可得如下点的坐标:

P(0,0,a),F(1,0,0),B(2,2,0)

则有: =(1,0,﹣a), =(1,2,0)

因为PD⊥底面ABCD,所以平面ABCD的一个法向量为 =(0,0,1)

设平面PFB的一个法向量为 =(x,y,z),则可得 ,令x=1,得z= ,y=﹣

所以 =(1,﹣

由已知,二面角P﹣BF﹣C的余弦值为 ,所以得 = ,解得a=2.

因为PD是四棱锥P﹣ABCD的高,

所以其体积为VPABCD= ×2×4=


【解析】(1)根据一对对边平行且相等,得到一个四边形是平行四边形,根据平行四边形对边平行,把两条异面直线所成的角表示出来,放到△PBF中,利用余弦定理求出角的余弦值.(2)以D为原点,射线DA,DC,DP分别为x,y,z轴建立空间直角坐标系,设出线段的长,根据条件中所给的两个平面的二面角的值,求出设出的a的值,再求出四棱锥的体积.
【考点精析】本题主要考查了异面直线及其所成的角的相关知识点,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两位小学生各有2008年奥运吉祥物“福娃”5个(其中“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮各一个”),现以投掷一个骰子的方式进行游戏,规则如下:当出现向上的点数是奇数时,甲赢得乙一个福娃;否则乙赢得甲一个福娃,规定掷骰子的次数达9次时,或在此前某人已赢得所有福娃时游戏终止.记游戏终止时投掷骰子的次数为ξ
(1)求掷骰子的次数为7的概率;
(2)求ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在直角坐标系中圆C的参数方程为为参数),以原点O为极点, 轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为

(1)求圆C的直角坐标方程及其圆心C的直角坐标;

(2)设直线与曲线交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各式中,所得数值最小的是( )
A.sin50°cos39°﹣sin40°cos51°
B.﹣2sin240°+1
C.2sin6°cos6°
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,平面平面分别为棱的中点.求证:

(1)平面

(2)平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A. 选修4-1:几何证明选讲

如图,已知为圆的一条弦,点为弧的中点,过点任作两条弦分别交于点.

求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)图象的一部分如图所示,函数g(x)=f(x+ ),则下列结论正确的是(

A.函数g(x)的奇函数
B.函数f(x)与g(x)的图象均关于直线x=﹣ π对称
C.函数f(x)与g(x)的图象均关于点(﹣ ,0)对称
D.函数f(x)与g(x)在区间(﹣ ,0)上均单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(sinx+ cosx)2﹣2.
(1)当x∈[0, ]时,求函数f(x)的单调递增区间;
(2)若x∈[﹣ ],求函数g(x)= f2(x)﹣f(x+ )﹣1的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是偶函数,且f(x+ )=f( ﹣x),当﹣ ≤x≤0时,f(x)=( x﹣1,记an=f( ),n∈N+ , 则a2046的值为( )
A.1﹣
B.1﹣
C.﹣1
D.﹣1

查看答案和解析>>

同步练习册答案