精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x3﹣3ax2﹣9a2x+a3 . 若a> ,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,则a的取值范围为(
A.( ]
B.( ,1]
C.[﹣ ,1]
D.[0, ]

【答案】A
【解析】解:f′(x)=3x2﹣6ax﹣9a2的图象是一条开口向上的抛物线,关于x=a对称. 若 <a≤1,则f′(x)在[1,4a]上是增函数,
从而(x)在[1,4a]上的最小值是f′(1)=3﹣6a﹣9a2 , 最大值是f′(4a)=15a2
由|f′(x)|≤12a,得﹣12a≤3x2﹣6ax﹣9a2≤12a,于是有3﹣6a﹣9a2≥﹣12a,且f′(4a)=15a2≤12a.
由f′(1)≥﹣12a得﹣ ≤a≤1,由f′(4a)≤12a得0≤a≤
所以a∈( ,1]∩[﹣ ,1]∩[0, ],即a∈( ].
若a>1,则∵|f′(a)|=15a2>12a.故当x∈[1,4a]时|f′(x)|≤12a不恒成立.
所以使|f′(x)|≤12a(x∈[1,4a])恒成立的a的取值范围是( ],
故选:A.
【考点精析】关于本题考查的函数的最大(小)值与导数,需要了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,过底面是矩形的四棱锥FABCD的顶点FEFAB,使AB=2EF,且平面ABFE⊥平面ABCD,若点GCD上且满足DG=G.

求证:(1)FG∥平面AED;

(2)平面DAF⊥平面BAF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知R是实数集, ,则N∩RM=(
A.(1,2)
B.[0,2]
C.
D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2|x﹣a|.
(1)若函数y=f(x)为偶函数,求a的值;
(2)若a= ,求函数y=f(x)的单调递增区间;
(3)当a>0时,若对任意的x∈(0,+∞),不等式f(x﹣1)≤2f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点是直线上一动点,过点作圆的切线

(1)当的横坐标为2时,求切线方程;

(2)求证:经过三点的圆必过定点,并求此定点的坐标;

(3)当线段长度最小时,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,a2=4,且对任意m,n,p,q∈N* , 若m+n=p+q,则有am+an=ap+aq . (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{ }的前n项和为Sn , 求证: ≤Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1若不等式的解集为,求实数的值;

2解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数在区间上的图象,为了得到这个函数的图象,只需将y=sinx的图象

A. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变

B. 向左平移至个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变

C. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变

D. 向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=0,an+1=an+2 +1
(1)求证数列{ }是等差数列,并求出an的通项公式;
(2)若bn= ,求数列{b}的前n项的和Tn

查看答案和解析>>

同步练习册答案