精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)证明:上单调递减,在上单调递增;

2)记函数的最小值为,求的最大值.

【答案】1)证明见解析;

2的最大值为2.

【解析】

1)由定义法,分别设两种不同情况时,计算的正负即可;

2)分别计算时的最小值,更小的那个即为函数的最小值,再分不同情况时将的函数解析式表示出,画图即可求出的最大值.

1)设,

又∵,

.

,,

.

,,

.

上单调递减,在上单调递增.

2)由(1)得,时的最小值为.

由∵当,二次函数的对称轴为,

由题意可得,,.

∴当a0, (-∞,0]上递减,故在(-∞,0]上的最小值为, f(x)(0,+∞)上的最小值为f(1)3a

,

.

a0,f(x)(-∞,0]上的最小值为f(a)1,f(x)(0,+∞)上的最小值为f(1)3a

,

.

,

所以M(a)(-∞,0)上为常数函数,(0,1)上是增函数,(1,+∞)上是减函数,作出M(a)的函数图象如图所示:

所以M(a)的最大值为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在著名的汉诺塔问题中,有三根高度相同的柱子和一些大小及颜色各不相同的圆盘,三根柱子分别为起始柱、辅助柱及目标柱.已知起始柱上套有个圆盘,较大的圆盘都在较小的圆盘下面.现把圆盘从起始柱全部移到目标柱上,规则如下:每次只能移动一个圆盘,且每次移动后,每根柱上较大的圆盘不能放在较小的圆盘上面,规定一个圆盘从任一根柱上移动到另一根柱上为一次移动.若将个圆盘从起始柱移动到目标柱上最少需要移动的次数记为,则____________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)="xln" x–ax2+(2a–1)xaR.

)令g(x)=f'(x),求g(x)的单调区间;

)已知f(x)x=1处取得极大值.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的,,三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:

车间

数量

50

150

100

(1)求这6件样品中来自,,各车间产品的数量;

(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.

(1)9∈(AB);(2){9}=AB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,在抛物线上且满足,当取最大值时,点恰好在以为焦点的双曲线上,则双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求函数的最大值;

(2)令其图象上任意一点处切线的斜率恒成立,求实数的取值范围;

(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)满足:对于st∈[0+∞),都有f(s)≥0f(t)≥0,且f(s)+f(t)≤f(s+t)则称函数f (x)“T函数”.

(I)试判断函数f1(x)=x2f2(x)=lg(x+1)是否是“T函数”,并说明理由;

(Ⅱ)f (x)“T函数”,且存在x0∈[0+∞),使f(f(x0))=x0.求证f (x0) =x0

(Ⅲ)试写出一个“T函数”f(x)满足f(1)=1,且使集合{y|y=f(x)0≤x≤1)中元素的个数最少.(只需写出结论

查看答案和解析>>

同步练习册答案