【题目】下列有关命题的说法中错误的是
A. 在频率分布直方图中,中位数左边和右边的直方图的面积相等 .
B. 一个样本的方差是,则这组数据的总和等于60.
C. 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越差.
D. 对于命题使得<0,则,使.
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD – A1B1C1D1中,点E,F,G分别是棱BC,A1B1,B1C1的中点.
(1)求异面直线EF与DG所成角的余弦值;
(2)设二面角A—BD—G的大小为θ,求 |cosθ| 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了创建全国文明城市,面向社会招募志愿者,现从20岁至50岁的志愿者中按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示,若用分层抽样的方法从这些志愿者中抽取20人参加“创建全国文明城市验收日”的活动。
(1)求从第2组和第3组中抽取的人数分别是多少;
(2)若小李和小王都是32岁,同时参加了“创建全国文明城市验收日”的活动,现要从第3组抽取的人中临时抽调两人去执行另一任务,求小李和小王至少有一人被抽调的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x﹣2|﹣|2x+l|.
(I)求不等式f(x)≤x的解集;
(II )若不等式f(x)≥t2﹣t在x∈[﹣2,﹣1]时恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE= BB1 , C1F= CC1 .
(1)求平面AEF与平面ABC所成角α的余弦值;
(2)若G为BC的中点,A1G与平面AEF交于H,且设 = ,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数在区间上单调递减,则实数的取值范围是( )
A. B. C. D.
【答案】C
【解析】∵,
∴,
由得,
∴函数的单调减区间为,
又函数在区间上单调递减,
∴ ,
∴,解得,
∴实数的取值范围是.选C.
点睛:已知函数在区间上的单调性求参数的方法
(1)利用导数求解,转化为导函数在该区间上大于等于零(或小于等于零)恒成立的问题求解,一般通过分离参数化为求函数的最值的问题.
(2)先求出已知函数的单调区间,然后将问题转化为所给的区间是函数相应的单调区间的子集的问题处理.
【题型】单选题
【结束】
7
【题目】设,函数的图象向右平移个单位长度后与原图象重合,则的最小值是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com