精英家教网 > 高中数学 > 题目详情

【题目】如图,A,B,C,D四点在同一圆上,BC与AD的延长线交于点E,点F在BA的延长线上.

(1)若 = =1,求 的值;
(2)若EF2=FAFB,证明:EF∥CD.

【答案】
(1)解:∵A,B,C,D四点共圆,

∴∠ECD=∠EAB,∠EDC=∠B

∴△EDC∽△EBA,可得 = =

=( 2,即 =( 2

=


(2)解:证明:∵EF2=FAFB,

=

又∵∠EFA=∠BFE,

∴△FAE∽△FEB,可得∠FEA=∠EBF,

又∵A,B,C,D四点共圆,

∴∠EDC=∠EBF,

∴∠FEA=∠EDC,

∴EF∥CD.


【解析】(1)根据圆内接四边形的性质,可得∠ECD=∠EAB,∠EDC=∠B,从而△EDC∽△EBA,所以有 = = ,利用比例的性质可得 =( 2 , 得到 = ;(2)根据题意中的比例中项,可得 = ,结合公共角可得△FAE∽△FEB,所以∠FEA=∠EBF,再由(I)的结论∠EDC=∠EBF,利用等量代换可得∠FEA=∠EDC,内错角相等,所以EF∥CD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形ABCD中,AB=2,CD=4,BC= ,点E,F分别为AD,BC的中点.如果对于常数λ,在ABCD的四条边上,有且只有8个不同的点P使得 =λ成立,那么实数λ的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,以原点O为顶点,以y轴为对称轴的抛物线E的焦点为F(0,1),点M是直线l:y=m(m<0)上任意一点,过点M引抛物线E的两条切线分别交x轴于点S,T,切点分别为B,A.

(1)求抛物线E的方程;

(2)求证:点S,T在以FM为直径的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A,B,C的对边分别是a,b,c,3sin2C+8sin2A=11sinAsinC,且c<2a.
(1)求证:△ABC为等腰三角形
(2)若△ABC的面积为8 .且sinB= ,求BC边上的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆 =1(a>b>0)的左、右顶点分别为A,B,焦距为2 ,直线x=﹣a与y=b交于点D,且|BD|=3 ,过点B作直线l交直线x=﹣a于点M,交椭圆于另一点P.

(1)求椭圆的方程;
(2)证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:

气温/

18

13

10

-1

用电量/

24

34

38

64

由表中数据得线性回归方程中,≈-2,预测当气温为-4℃时,用电量为多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四种说法中,
①命题“存在x∈R,x2﹣x>0”的否定是“对于任意x∈R,x2﹣x<0”;
②命题“p且q为真”是“p或q为真”的必要不充分条件;
③已知幂函数f(x)=xα的图象经过点(2, ),则f(4)的值等于
④已知向量 =(3,﹣4), =(2,1),则向量 在向量 方向上的投影是
说法错误的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得=80, =20, =184, =720.

(1)求家庭的月储蓄y对月收入x的线性回归方程ybxa

(2)判断变量xy之间是正相关还是负相关;

(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

附:线性回归方程ybxa中, ab,其中 为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,离心率

(1)求椭圆的标准方程

(2)若分别是椭圆的左、右焦点,过的直线与椭圆交于不同的两点,求的内切圆半径的最大值.

查看答案和解析>>

同步练习册答案