精英家教网 > 高中数学 > 题目详情

【题目】给出下列五个命题:

函数的一条对称轴是

函数的图象关于点(,0)对称;

正弦函数在第一象限为增函数

,则,其中

以上四个命题中正确的有    (填写正确命题前面的序号)

【答案】①②

【解析】

利用三角函数的图象与性质处理有关命题的正误.

把x=代入函数得 y=1,为最大值,故正确.

结合函数y=tanx的图象可得点(,0)是函数y=tanx的图象的一个对称中心,故正确.

正弦函数在第一象限为增函数,不正确,如390°60°,都是第一象限角,但sin390°<sin60°.

,则有 2x1=2kπ+2x2,或 2x1=2kπ+π﹣(2x2),k∈z,

∴x1﹣x2=kπ,或x1+x2=kπ+,k∈z,故不正确.

故答案为①②.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形, , .

(Ⅰ)若的中点,求证: 平面

(Ⅱ)若 ,求三棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年6月14日,第二十一届世界杯尼球赛在俄罗斯拉开了帷幕,某大学在二年级作了问卷调查,从该校二年级学生中抽取了人进行调查,其中女生中对足球运动有兴趣的占,而男生有人表示对足球运动没有兴趣.

(1)完成列联表,并回答能否有的把握认为“对足球是否有兴趣与性别有关”?

有兴趣

没有兴趣

合计

合计

(2)若将频率视为概率,现再从该校二年级全体学生中,采用随机抽样的方法每饮抽取名学生,抽取次,记被抽取的名学生中对足球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB分别是椭圆的左、右顶点,P为椭圆C的下顶点,F为其右焦点M是椭圆C上异于AB的任一动点,过点A作直线以线段AF为直径的圆交直线AM于点AN,连接FN交直线l于点G的坐标为,且,椭圆C的离心率为

求椭圆C的方程;

试问在x轴上是否存在一个定点T,使得直线MH必过该定点T?若存在,求出点T的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)解关于的不等式

(2)若不等式的解集为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

0

0

2

0

0

(1)请将上表数据补充完整,填写在相应位置,并求出函数的解析式;

(2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数的图象,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视台为宣传本市,随机对本市内岁的人群抽取了人,回答问题本市内著名旅游景点有哪些,统计结果如图表所示.

组号

分组

回答正确的人数

回答正确的人数占本组的频率

1

[15,25)

a

0.5

2

[25,35)

18

x

3

[35,45)

b

0.9

4

[45,55)

9

0.36

5

[55,65]

3

y

(1)分别求出的值;

(2)根据频率分布直方图估计这组数据的中位数(保留小数点后两位)和平均数;

(3)若第1组回答正确的人员中,有2名女性,其余为男性,现从中随机抽取2人,求至少抽中1名女性的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港口的水深(米)是时间,单位:小时)的函数,下面是每天时间与水深的关系表:

0

3

6

9

12

15

18

21

24

10

13

9.9

7

10

13

10.1

7

10

经过长期观测, 可近似的看成是函数

1)根据以上数据,求出的解析式

2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中几个小时可以安全的进出该港?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.

(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;

(2)当AB=3,AD=2时,求二面角E-AG-C的大小.

查看答案和解析>>

同步练习册答案