精英家教网 > 高中数学 > 题目详情
设函数y=f(x)在R上有意义,对于给定的正数K,定义fk(x)=
f(x),f(x)≥k
k,f(x)<k
,取函数f(x)=2+x+e-x,如对任意的x∈R恒有fk(X)=f(x).则K的最大值为
 
考点:函数的最值及其几何意义
专题:函数的性质及应用,导数的综合应用
分析:由已知条件可得k≤f(x)min,用导数确定函数函数的单调性,求解函数的最值,进而求出k的范围,进一步得出所要的结果.
解答: 解:由题意可得出k≤f(x)min
由于f′(x)=1-e-x,令f′(x)=0,e-x=1=e0解出x=0,
当x>0时,f′(x)>0,f(x)单调递增,
当x<0时,f′(x)<0,f(x)单调递减.
故当x=0时,f(x)取到最小值f(0)=2+1=3.
故当k≤3时,恒有fk(x)=f(x)
因此k的最大值为3.
故答案为3.
点评:本题考查学生对新定义型问题的理解和掌握程度,理解好新定义的分段函数是解决本题的关键,将所求解的问题转化为求解函数的最值问题,利用了导数的工具作用,体现了恒成立问题的解题思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
a
=(1,2),
b
=(2,1),若向量λ
a
+
b
与向量
c
=(-3,3)垂直,则λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2).

(Ⅰ)求f(x)的解析式及x0的值;
(Ⅱ)求f(x)在[-π,π]上的单调区间;
(Ⅲ)若f(x)=
8
5
,x∈(0,
π
3
),求cosx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校为了对学生的语文、英语的综合阅读能力进行分析,在全体学生中随机抽出5位学生的成绩作为样本,这5位学生的语文、英语的阅读能力等级得分(6分制)如下表:
x(语文阅读能力)23456
y(英语阅读能力)1.534.556
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
?
y
=bx+a

(2)试根据(1)求出的线性回归方程,预测语文阅读能力为3.5的学生的英语阅读能力等级.
(注:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
, 
?
a
=
.
y
-
?
b
 
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

欧洲很多国家及美国已经要求禁止在校园出售软饮料,禁止向中小学生销售可口可乐等高热量碳酸饮料,原因是这些饮料被认为是造成儿童 肥胖问题日益严重的主要原因之一.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到列联表:平均每天喝500mL以上为常喝,体重超过50kg为肥胖.
常喝不常喝合计
肥胖2
不肥胖18
合计30
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为
4
15

(1)请将列联表补充完整
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由
(3)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少?
参考数据:
P(K2≥K)0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程是ρ-2cosθ-4sinθ=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,设直线l的参数方程是
x=
1
2
t
y=2+
3
2
t
(t是参数).
(1)将曲线C的极坐标方程化为直角坐标方程,将直线l的参数方程化为普通方程;
(2)若直线l与曲线C相交于A、B两点,与y轴交于点E,求|EA|+|EB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=8x-2-x+2的一个零点所在区间为(  )
A、(1,2)
B、(2,3)
C、(3,4)
D、(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
lg|x|
x2
的大致图象为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

某校从参加高一年级期末考试的学生中抽出60名学生,将其生物成绩(均为整数)分成六段[40,50),[50,60),…,[90,100],频率分布直方图如图.观察图形的信息,回答下列问题:
(1)求出生物成绩低于50分的学生人数;
(2)估计这次考试的众数m与中位数n (结果保留一位小数)
(3)估计这次考试的及格率(60分及以上为及格).

查看答案和解析>>

同步练习册答案