分析 由题椭圆定义利用配方法求得$|{{{\overrightarrow{PF}}_1}}|×|{\overrightarrow{P{F_2}}}|$ 的最大值m,再由平面向量的坐标运算求得$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最小值n,由m≥2n,结合隐含条件求得椭圆的离心率的取值范围.
解答 解:∵|PF1|+|PF2|=2a,
∴|PF2|=2a-|PF1|(a-c≤|PF1|≤a+c),
∴|PF1|•|PF2|=|PF1|(2a-|PF1|)=-|PF1|2+2a|PF1|=-(|PF1|-a)2+a2
∵a-c≤|PF1|≤a+c
∴|PF1|•|PF2|=-(|PF1|-a)2+a2∈[b2,a2],
∴$|\overrightarrow{P{F}_{1}}|×|\overrightarrow{P{F}_{2}}|$的最大值m=a2;
设P(x,y),
则$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=(-c-x,-y)•(c-x,-y)
=x2+y2-c2=x2+$\frac{{b}^{2}}{{a}^{2}}({a}^{2}-{x}^{2})$-c2=$(1-\frac{1}{{a}^{2}}){x}^{2}+{b}^{2}-{c}^{2}$,
∵x∈[-a,a],∴x2∈[0,a2],
∴$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最小值为n=b2-c2,
由m≥2n,得a2≥2(b2-c2)=2(a2-2c2)=2a2-4c2,
∴a2≤4c2,解得$e=\frac{c}{a}∈$$[{\frac{1}{2},1})$.
故答案为:$[\frac{1}{2},1)$.
点评 本题考查椭圆的简单性质,考查了平面向量在求解圆锥曲线问题中的应用,训练了利用配方法求函数的最值,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0.76<log0.76<60.7 | B. | log0.76<0.76<60.7 | ||
C. | log0.76<60.7<0.76 | D. | 0.76<60.7<log0.76 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com