A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
分析 利用二倍角公式、两角和差的余弦函数化简函数f(x)和g(x)的解析式,再根据函数y=Asin(ωx+∅)的图象变换规律,得出结论.
解答 解:∵f(x)=sinxcosx-$\sqrt{3}$cos2x=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}(1+cos2x)}{2}$=sin(2x-$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$,
h(x)=sin[2(x-k)+$\frac{π}{3}$]-$\frac{{\sqrt{3}}}{2}$=sin(2x-2k+$\frac{π}{3}$)-$\frac{{\sqrt{3}}}{2}$,
∴由题意可得:-$\frac{π}{3}$=-2k+$\frac{π}{3}$+2mπ,或π+$\frac{π}{3}$=-2k+$\frac{π}{3}$+2mπ,m∈Z,
∴解得:k=m$π+\frac{π}{3}$,或k=mπ-π,m∈Z,
∴由k>0,可得k的最小值为$\frac{π}{3}$.
故选:B.
点评 本题主要考查函数y=Asin(ωx+∅)的图象变换规律,以及二倍角公式、两角和差的余弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | ②③ | B. | ③④ | C. | ②④ | D. | ①④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{3}$或$\frac{2\sqrt{3}}{3}$ | D. | $\frac{2\sqrt{3}}{3}$或2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com