精英家教网 > 高中数学 > 题目详情
14.函数f(x)=sinxcosx-$\sqrt{3}$cos2x的图象可由函数g(x)=sin(2x+$\frac{π}{3}$)-$\frac{{\sqrt{3}}}{2}$的图象向右平移k(k>0)个单位得到,则k的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

分析 利用二倍角公式、两角和差的余弦函数化简函数f(x)和g(x)的解析式,再根据函数y=Asin(ωx+∅)的图象变换规律,得出结论.

解答 解:∵f(x)=sinxcosx-$\sqrt{3}$cos2x=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}(1+cos2x)}{2}$=sin(2x-$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$,
h(x)=sin[2(x-k)+$\frac{π}{3}$]-$\frac{{\sqrt{3}}}{2}$=sin(2x-2k+$\frac{π}{3}$)-$\frac{{\sqrt{3}}}{2}$,
∴由题意可得:-$\frac{π}{3}$=-2k+$\frac{π}{3}$+2mπ,或π+$\frac{π}{3}$=-2k+$\frac{π}{3}$+2mπ,m∈Z,
∴解得:k=m$π+\frac{π}{3}$,或k=mπ-π,m∈Z,
∴由k>0,可得k的最小值为$\frac{π}{3}$.
故选:B.

点评 本题主要考查函数y=Asin(ωx+∅)的图象变换规律,以及二倍角公式、两角和差的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设m,n是不同的直线,α,β是不同的平面,下列四个命题为真命题的是(  )
①若m⊥α,n⊥m,则n∥α;       
②若α∥β,n⊥α,m∥β,则n⊥m;
③若m∥α,n⊥β,m⊥n,则α⊥β;
④若m∥α,n⊥β,m∥n,则α⊥β.
A.②③B.③④C.②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=$\sqrt{2}$,F是BC的中点.
(Ⅰ)求证:DA⊥平面PAC
(Ⅱ)PD的中点为G,求证:CG∥平面PAF
(Ⅲ)求三棱锥A-CDG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若双曲线的渐近线为y=±$\sqrt{3}$x,则它的离心率可能是(  )
A.$\sqrt{3}$B.2C.$\sqrt{3}$或$\frac{2\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.满足{2,3}⊆M⊆{1,2,3,4,5}的集合M的个数为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数y=f(x)(x∈R)图象过点(e,0),f'(x)为函数f(x)的导函数,e为自然对数的底数,若x>0时,xf'(x)<2恒成立,则不等式f(x)+2≥2lnx解集为(0,e].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.数列{an}是公比为q(q>1)的等比数列,其前n项和为Sn.已知S3=7,且3a2是a1+3与a3+4的等差数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设bn=$\frac{1}{lo{g}_{2}{a}_{n+1}}$,cn=bn(bn+1-bn+2),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图的程序框图所描述的算法,若输入m=209,n=121,则输出的m的值为(  )
A.0B.11C.22D.88

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式ax2+ax-4<0的解集为R,则a的取值范围是(-16,0].

查看答案和解析>>

同步练习册答案