精英家教网 > 高中数学 > 题目详情
2.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的左焦点为(-2,0),离心率为$\frac{1}{2}$,则C的标准方程为(  )
A.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$B.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$C.$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{8}=1$D.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{8}=1$

分析 由已知可得c=2,且$\frac{c}{a}=\frac{1}{2}$,求出a后结合隐含条件求得b,则椭圆方程可求.

解答 解:由题意知,c=2,且$\frac{c}{a}=\frac{1}{2}$,
∴a=4,
又a2=b2+c2
∴b2=a2-c2=16-4=12.
∴C的标准方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$.
故选:A.

点评 本题考查椭圆的标准方程,考查了椭圆的简单性质,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知曲线C的极坐标方程是ρ=4cosθ,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,设直线L的参数方程为$\left\{\begin{array}{l}x=5+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$(t为参数)
(1)求曲线C的直角坐标方程与直线L的普通方程
(2)设曲线C与直线L相交于P,Q两点,求|PQ|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=cos2x+sinxcosx-1的最小正周期是π,单调递增区间是[kπ-$\frac{3π}{8}$,2kπ+$\frac{π}{8}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={y|y=log2x,0<x<1},B={y|y=($\frac{1}{2}$)x,x>1},则(∁RA)∩B=(  )
A.(0,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{2}$,1)D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在△ABC中,AO⊥BC于O,OB=2OA=2OC=4,点D,E,F分别为OA,OB,OC的中点,BD与AE相交于H,CD与AF相交于G,将△ABO沿OA折起,使二面角B-OA-C为直二面角.
(Ⅰ)在底面△BOC的边BC上是否存在一点P,使得OP⊥GH,若存在,请计算BP的长度;若不存在,请说明理由;
(Ⅱ)求二面角A-GH-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图在△ABC中,$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{NC}$,P是BN上的一点,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+$\frac{1}{5}$$\overrightarrow{AC}$,则实数λ的值为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{4}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a>b>0,椭圆C1的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,双曲线C2的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,C1与C2的离心率之积为$\frac{{\sqrt{3}}}{2}$,则双曲线C2的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为$\sqrt{3}$的线段的概率为(  )
A.$\frac{1}{4}$B.$\frac{2}{5}$C.$\frac{5}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.方程2x-1+x-5=0的解所在的区间是(  )
A.(0,1)B.(2,3)C.(1,2)D.(3,4)

查看答案和解析>>

同步练习册答案