精英家教网 > 高中数学 > 题目详情

【题目】已知 是同一平面内的三个向量,其中 =(﹣ ,1).
(1)若| |=2 且 ,求 的坐标;
(2)若| |= ,( +3 )⊥( ),求向量 的夹角的余弦值.

【答案】
(1)解:设 =(m,n),

若| |=2 且 ,其中 =(﹣ ,1),

可得m2+n2=4,m=﹣ n,

解得m=﹣ ,n= 或m= ,n=﹣

=(﹣ )或( ,﹣


(2)解:若 =(﹣ ,1),可得| |=

又| |= ,( +3 )⊥( ),

可得( +3 )( )= 2﹣3 2+2 =0,

即有3﹣3×2+2 =0,

可得 =

向量 的夹角的余弦值为 = =


【解析】(1)设 =(m,n),运用向量模的公式和向量共线的坐标表示,解方程即可得到所求;(2)由向量垂直的条件:数量积为0,以及向量的平方即为模的平方,化简整理,可得 = ,再由向量夹角的余弦公式,计算即可得到所求值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧, =2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是(
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是首项为正数的等差数列,a1a2=3,a2a3=15.
(1)求数列{an}的通项公式;
(2)设bn=(an+1)2 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由函数y=sin x 的图象经过( )变换,得到函数 y=sin(2x﹣ )的图象.
A.纵坐标不变,横坐标缩小到原来的 ,再向右平移 个单位
B.纵坐标不变,向右平移 个单位,再横坐标缩小到原来的
C.纵坐标不变,横坐标扩大到原来的 2 倍,再向左平移 个单位
D.纵坐标不变,向左平移 个单位,再横坐标扩大到原来的 2 倍

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若α,β∈(0, ),sin( )=﹣ ,cos( )= ,则α+β=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数在区间(﹣∞,0)上是增函数的是(
A.f(x)=x2﹣4x
B.g(x)=3x+1
C.h(x)=3x
D.t(x)=tanx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记所有非零向量构成的集合为V,对于 ∈V, ,定义V( )=|x∈V|x =x |
(1)请你任意写出两个平面向量 ,并写出集合V( )中的三个元素;
(2)请根据你在(1)中写出的三个元素,猜想集合V( )中元素的关系,并试着给出证明;
(3)若V( )=V( ),其中 ,求证:一定存在实数λ1 , λ2 , 且λ12=1,使得 1 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对于函数f(x)的定义域中任意的x1 , x2(x1≠x2),恒有 成立,则称函数f(x)为“单凸函数”,下列有四个函数:
(1)y=2x;(2)y=lgx;(3) ;(4)y=x2
其中是“单凸函数”的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (2x﹣2﹣x)(a>0,且a≠1).
(1)判断函数f(x)的奇偶性和单调性,并说明理由;
(2)当x∈(﹣1,1)时,总有f(m﹣1)+f(m)<0,求实数m的取值范围.

查看答案和解析>>

同步练习册答案