精英家教网 > 高中数学 > 题目详情

【题目】已知函数,( ).

(1)若 ,求函数的单调增区间;

(2)若时,不等式上恒成立,求实数的取值范围;

(3)当 时,记函数的导函数的两个零点是),求证: .

【答案】(1) ;(2);(3)详见解析.

【解析】试题分析:

(1)利用导函数大于零可得函数的单调增区间为 .

(2)不等式恒成立转化为在区间上恒成立,构造新函数,结合题意讨论其性质可得

(3)由题意可得),由根与系数的关系: .由题意有

,构造新函数.利用函数的性质可得.

试题解析:(1)由题意: 时,

所以

,得,因为,所以

所以的单调增区间为

(2)时,

不等式上恒成立即为: 在区间上恒成立

,则,令得:

因为时, 时,

所以上单调递减,在上单调递增

所以,所以

(3)方法一:因为,所以,从而

由题意知, 是方程的两个根,故.

,则,因为,所以

,所以 ,且 ).

因为,所以 .

.

因为,所以单调递增,

所以,即.

方法二:因为,所以,从而).

由题意知, 是方程的两个根.记,则

因为,所以

所以 ,且上为减函数.

所以.

因为,故.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某批产品中,有放回地抽取产品两次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”,其概率P(A)=0.96.

(1)求从该批产品中任取1件是二等品的概率p.

(2)若该批产品共100件,从中无放回抽取2件产品,ξ表示取出的2件产品中二等品的件数.求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们用圆的性质类比球的性质如下:

p:圆心与弦(非直径)中点的连线垂直于弦; q:球心与小圆截面圆心的连线垂直于截面.

p:与圆心距离相等的两条弦长相等; q:与球心距离相等的两个截面圆的面积相等.

p:圆的周长为Cd(d是圆的直径); q:球的表面积为Sd2(d是球的直径).

p:圆的面积为S=R·πd(R,d是圆的半径与直径); q:球的体积为V=R·πd2(R,d是球的半径与直径).

则上面的四组命题中,其中类比得到的q是真命题的有( )个

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾, 5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元,距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成 五组,并作出如下频率分布直方图(图1):

(1)试根据频率分布直方图估计小区平均每户居民的平均损失;

(同一组中的数据用该组区间的中点值作代表);

(2)小明向班级同学发出倡议,为该小区居民捐款,现从损失超过6000元的居民中随机

抽出2户进行捐款援助,求抽出的2户居民损失均超过8000元的概率;

(3)台风后区委会号召该小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如下表,

在图2表格空白外填写正确数字,并说明是否有95%以上的把握认为捐款数额超过或

不超过500元和自身经济损失是否超过4000元有关?

经济损失不超过4000元

经济损失超过4000元

合计

捐款超过500元

30

捐款不超过500元

6

合计

附:临界值参考公式: .

0.15

0.10

0.05

/td>

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(

(1)若,求曲线处的切线方程.

(2)对任意,总存在,使得(其中的导数)成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十八届五种全会公报指出:努力促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策,提高生殖保健、妇幼保健、托儿等公共服务水平.为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了100位30到40岁的公务员,得到情况如下表:

男公务员

女公务员

生二胎

40

20

不生二胎

20

20

(1)是否有95%以上的把握认为“生二胎与性别有关”,并说明理由;

(2)把以上频率当概率,若从社会上随机抽取3位30到40岁的男公务员,记其中生二胎的人数为,求随机变量的分布列,数学期望.

0.050

0.010

0.001

3.841

6.635

10.828

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂于2016年下半年对生产工艺进行了改造(每半年为一个生产周期),从2016年一年的产品中用随机抽样的方法抽取了容量为50的样本,用茎叶图表示(如图).已知每个生产周期内与其中位数误差在±5范围内(含±5)的产品为优质品,与中位数误差在±15范围内(含±15)的产品为合格品(不包括优质品),与中位数误差超过±15的产品为次品.企业生产一件优质品可获利润20元,生产一件合格品可获利润10元,生产一件次品要亏损10元

(Ⅰ)求该企业2016年一年生产一件产品的利润为10的概率;

(Ⅱ)是否有95%的把握认为“优质品与生产工艺改造有关”.

附:

PK2≥k

0.050

0.010

0.001

k

3.841

6.635

10.828

K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为,且成绩分布在分数在以上(含的同学获奖. 按文理科用分层抽样的方法抽取人的成绩作为样本得到成绩的频率分布直方图(见下图).

(1)填写下面的列联表,能否有超过的把握认为获奖与学生的文理科有关

(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取名学生获奖学生人数为,求的分布列及数学期望.

文科生

理科生

合计

获奖

不获奖

合计

附表及公式:

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)设

①记的导函数为,求

②若方程有两个不同实根,求实数的取值范围;

(2)若在上存在一点使成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案