精英家教网 > 高中数学 > 题目详情
9.将一个数列中部分项按原来的先后次序排列所成的一个新数列称为原数列的一个子数列.如果数列存在成等比数列的子数列,那么称该数列为“弱等比数列”.已知m>1,设区间(m,+∞)内的三个正整数a,x,y满足:数列a2,$\sqrt{{y}^{2}-1}$,cos$\frac{π}{2}$,x2-1为“弱等比数列”,则$\frac{a}{x}$的最小值为2.

分析 由新定义可得数列a2,$\sqrt{{y}^{2}-1}$,x2-1为等比数列,进一步得到$\frac{{x}^{2}}{\frac{{a}^{2}-1}{{a}^{2}}}-\frac{{y}^{2}}{{a}^{2}-1}=1$,由此可得$\frac{{x}^{2}}{\frac{{a}^{2}-1}{{a}^{2}}}≤1$,即${x}^{2}≤\frac{{a}^{2}-1}{{a}^{2}}$,再转化为只含a的代数式,配方后利用基本不等式求最值.

解答 解:由题意,数列a2,$\sqrt{{y}^{2}-1}$,cos$\frac{π}{2}$,x2-1为“弱等比数列”,
则数列a2,$\sqrt{{y}^{2}-1}$,x2-1为等比数列,
∴y2-1=a2(x2-1),
即a2x2-y2=a2-1,
由题意可知,a>1,
∴$\frac{{x}^{2}}{\frac{{a}^{2}-1}{{a}^{2}}}-\frac{{y}^{2}}{{a}^{2}-1}=1$,
则$\frac{{x}^{2}}{\frac{{a}^{2}-1}{{a}^{2}}}≤1$,∴${x}^{2}≤\frac{{a}^{2}-1}{{a}^{2}}$,
则$\frac{{a}^{2}}{{x}^{2}}≥\frac{{a}^{4}}{{a}^{2}-1}$=$\frac{({a}^{2}-1)^{2}+2({a}^{2}-1)+1}{{a}^{2}-1}$=$({a}^{2}-1)+\frac{1}{{a}^{2}-1}+2≥4$,
当且仅当${a}^{2}-1=\frac{1}{{a}^{2}-1}$,即a=2(a>1)时取等号.
∴$\frac{a}{x}≥2$(a>1,x>1).
即$\frac{a}{x}$的最小值为2.
故答案为:2.

点评 本题考查数列递推式,考查了数列的函数特性,训练了利用基本不等式求最值,是难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,在长方体ABCD-A1B1C1D1中,已知AB=BC=2,BB1=3,连结BC1,过B1作B1E⊥BC1交CC1于点E.
(1)求证:AC1⊥平面B1D1E;
(2)求三棱锥C1-B1D1E的体积;
(3)求C1到面B1D1E的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C:x2+y2+4x+6y+12=0,过点P(1,1)做圆C的两条切线,切点分别为A、B.
(1)求切线长;
(2)求AB直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设F1,F2分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,A为双曲线的一个顶点,以F1F2为直径的圆交双曲线的一条渐近线于B,C两点,若△ABC的面积为$\frac{1}{2}{c^2}$,则该双曲线的离心率为(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线的一个焦点与抛物线x2=24y的焦点重合,其一条渐近线的倾斜角为60°,则该双曲线的标准方程为(  )
A.$\frac{x^2}{9}-\frac{y^2}{27}=1$B.$\frac{y^2}{9}-\frac{x^2}{27}=1$C.$\frac{y^2}{27}-\frac{x^2}{9}=1$D.$\frac{x^2}{27}-\frac{y^2}{9}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知二次函数f(x)=x2+(2a-1)x+1-2a.
(1)若f(x)只有一个零点,求实数a的值;
(2)若f(x)在区间$(-1,0)及(0,\frac{1}{2})$内各有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.等腰直角三角形ABC中,AB=BC=2,将斜边AC绕直角边AB旋转90°后得到旋转体A-BCD,如图所示,求:
(1)若E是CD的中点,求直线AE与面BCD所成的角;
(2)求异面直线AC和BD所成的角;(3)求旋转体A-BCD的体积V1和三棱锥A-BCD的体积V2之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在以直角坐标原点O为极点,x轴的非负半轴为极轴的极坐标系下,曲线C1的方程是ρ=1,将C1向上平移1个单位得到曲线C2
(Ⅰ)求曲线C2的极坐标方程;
(Ⅱ)若曲线C1的切线交曲线C2于不同两点M,N,切点为T,求|TM|•|TN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在三棱锥A-BCD中,等边△BCD的边长为4,△ABD是以∠A为直角的等腰直角三角形,平面ABD⊥平面BCD,点M是棱BD的中点.
(1)求证:CM⊥AB:
(2)求三棱锥A-BCD的体积.

查看答案和解析>>

同步练习册答案