精英家教网 > 高中数学 > 题目详情

【题目】设正项数列{an}的前n项和为Sn , 且a +2an=4Sn(n∈N*).
(1)求an
(2)设数列{bn}满足:b1=1,bn= (n∈N* , n≥2),求数列{bn}的前n项和Tn

【答案】
(1)解:当n=1时,a12+2a1=4S1=4a1

解得a1=2,

当n>1时,an12+2an1=4Sn1

又a +2an=4Sn(n∈N*).

两式相减可得,a ﹣an12+2an﹣2an1=4Sn﹣4Sn1=4an

即有(an﹣an1)(an+an1)=2(an+an1),

可得an﹣an1=2,

则an=a1+2(n﹣1)=2n:


(2)解:b1=1,bn= = = ),

前n项和Tn=1+ + + +…+ +

=1+ + ﹣﹣

=


【解析】(1)令n=1,求得首项为2;再由n>1时,将n换为n﹣1,相减可得an﹣an1=2,再由等差数列的通项公式,计算即可得到所求;(2)求得bn= = ),运用数列的求和方法:裂项相消求和,化简整理即可得到所求和.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD与ABEF均为矩形,BC=BE=2AB,二面角E﹣AB﹣C的大小为 .现将△ACD绕着AC旋转一周,则在旋转过程中,(

A.不存在某个位置,使得直线AD与BE所成的角为
B.存在某个位置,使得直线AD与BE所成的角为
C.不存在某个位置,使得直线AD与平面ABEF所成的角为
D.存在某个位置,使得直线AD与平面ABEF所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x2+2bx+c,设函数g(x)=|f(x)|在区间[﹣1,1]上的最大值为M.
(1)若b=2,试求出M;
(2)若M≥k对任意的b、c恒成立,试求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a﹣c)cosB=bcosC. (Ⅰ)求角B的大小;
(Ⅱ)若a=2,c=3,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ABCD与正方形BCEF所成角的二面角的平面角的大小是 ,PQ是正方形BDEF所在平面内的一条动直线,则直线BD与PQ所成角的取值范围是(

A.[ ]
B.[ ]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=3sin(4x+ )图象上所有点的横坐标伸长到原来的2倍,再向右平移 个单位长度,得到函数y=g(x)的图象,则y=g(x)图象的一条对称轴是(
A.x=
B.x=
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程为(x﹣3)2+y2=1,圆M的方程为(x﹣3﹣3cosθ)2+(y﹣3sinθ)2=1(θ∈R),过M上任意一点P作圆C的两条切线PA,PB,切点分别为A、B,则∠APB的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图象向左平移m(m>0)个单位长度,得到函数y=f(x)图象在区间 上单调递减,则m的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x﹣ sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是(  )
A.[﹣1,1]
B.[﹣1, ]
C.[﹣ ]
D.[﹣1,﹣ ]

查看答案和解析>>

同步练习册答案