【题目】△ABC的内角A、B、C所对的边a、b、c,且
(1)求角A
(2)若 ,求a的最小值.
【答案】
(1)解:因为 ,
由正弦定理,得sinAsinB= sinBcosA,
又sinB≠0,从而tanA= ,
由于0<A<π,所以A= .
(2)解:由题意可得:
= + ( ﹣ )﹣
= + ﹣ ﹣
=c2+b2﹣bccosA﹣a2
=2bccosA﹣bccosA
= bc=4,
∵bc=8,
由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2﹣bc≥2bc﹣bc=bc=8,
∴a≥2,
∴a的最小值为2 .
【解析】(1)由正弦定理化简已知可得sinAsinB= sinBcosA,又sinB≠0,从而可求tanA,由于0<A<π,即可解得A的值.(2)利用平面向量数量积的运算和余弦定理化简已知等式可得bc=8,利用余弦定理及基本不等式即可求得a的最小值.
【考点精析】掌握正弦定理的定义是解答本题的根本,需要知道正弦定理:.
科目:高中数学 来源: 题型:
【题目】如图所示,四棱锥,侧面是边长为2的正三角形,且平面平面,底面是菱形,且, 为棱上的动点,且.
(1)求证: ;
(2)试确定的值,使得二面角的余弦值为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数y=f(x)满足f(﹣x)+f(x)=0且f(x+1)=f(x﹣1),若x∈(0,1)时,f(x)=log2 ,则y=f(x)在(1,2)内是( )
A.单调增函数,且f(x)<0
B.单调减函数,且f(x)<0
C.单调增函数,且f(x)>0
D.单调增函数,且f(x)>0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f.
(1)如果函数的单调递减区间为,求函数的解析式;
(2)在(1)的条件下,求函数的图象在点处的切线方程;
(3)若不等式恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC⊥CB,点M和N分别是B1C1和BC的中点.
(1)求证:MB∥平面AC1N;
(2)求证:AC⊥MB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】绿色出行越来越受到社会的关注,越来越多的消费者对新能源汽车感兴趣但是消费者比较关心的问题是汽车的续驶里程某研究小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程单次充电后能行驶的最大里程,被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组: ,绘制成如图所示的频率分布直方图.
求直方图中m的值;
求本次调查中续驶里程在的车辆数;
若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车续驶里程在的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com