【题目】已知椭圆的两个焦点分别为,,离心率为,且椭圆四个顶点构成的菱形面积为.
(1)求椭圆C的方程;
(2)若直线l :y=x+m与椭圆C交于M,N两点,以MN为底边作等腰三角形,顶点为P(3,-2),求m的值及△PMN的面积.
科目:高中数学 来源: 题型:
【题目】已知椭圆: ,其中, 为左、右焦点,且离心率,直线与椭圆交于两不同点, .当直线过椭圆右焦点且倾斜角为时,原点到直线的距离为.
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395913728/STEM/2d7d70ba831f438cb4e191e234d85c18.png]
(Ⅰ)求椭圆的方程;
(Ⅱ)若,当面积为时,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了探究某市高中理科生在高考志愿中报考“经济类”专业是否与性别有关,现从该市高三理科生中随机抽取50名学生进行调查,得到如下2×2列联表:(单位:人)
(1)据此样本,判断能否在犯错误的概率不超过0.001的前提下认为理科生报考“经济类”专业与性别有关?
(2)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X,求随机变量X的概率分布列及数学期望.
附:
,其中n=a+b+c+d.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的上顶点为,且离心率为.
(1)求椭圆的方程;
(2)设是曲线上的动点,关于轴的对称点为,点,直线与曲线的另一个交点为(与不重合),过作直线,垂足为,是否存在定点,使为定值?若存在求出的坐标,不存在说明理由?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.
(1)求出第4组的频率,并补全频率分布直方图;
(2)根据样本频率分布直方图估计样本的中位数与平均数;
(3)如果用分层抽样的方法从“优秀”和“良好”的学生中共选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com