精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的两个焦点分别为,离心率为,且椭圆四个顶点构成的菱形面积为

(1)求椭圆C的方程;

(2)若直线l :y=x+m与椭圆C交于M,N两点,以MN为底边作等腰三角形,顶点为P(3,-2),求m的值及△PMN的面积.

【答案】(1);(2)

【解析】

1)根据离心率和菱形面积,得到关于的方程,解出得到椭圆方程.

2)直线与椭圆联立,利用韦达定理得到,得到中点坐标,然后利用等腰三角形三线合一,即底边中线与底边垂直,构造方程,求出中点坐标,利用弦长公式求出的长,利用点到直线的距离,求出底边上的高,从而得到的面积.

(1)椭圆四个顶点构成的菱形面积为

椭圆离心率为

解得,故所求椭圆C的方程为:

(2)设的中点为

消去得:

由韦达定理得:

所以

, 解得 ,满足

顶点到底边的距离为:

所求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,其中 为左、右焦点,且离心率,直线与椭圆交于两不同点 .当直线过椭圆右焦点且倾斜角为时,原点到直线的距离为.

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395913728/STEM/2d7d70ba831f438cb4e191e234d85c18.png]

(Ⅰ)求椭圆的方程;

(Ⅱ)若,当面积为时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直三棱柱中,是边长为2等边三角形,的中点.

(1)求证:平面

(2)若与平面所成角为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了探究某市高中理科生在高考志愿中报考“经济类”专业是否与性别有关现从该市高三理科生中随机抽取50名学生进行调查得到如下2×2列联表:(单位:人)

(1)据此样本判断能否在犯错误的概率不超过0.001的前提下认为理科生报考“经济类”专业与性别有关?

(2)若以样本中各事件的频率作为概率估计全市总体考生的报考情况现从该市的全体考生(人数众多)中随机抽取33人中报考“经济类”专业的人数为随机变量X求随机变量X的概率分布列及数学期望

附:

其中nabcd.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的上顶点为,且离心率为.

1)求椭圆的方程;

2)设是曲线上的动点,关于轴的对称点为,点,直线与曲线的另一个交点为(不重合),过作直线,垂足为,是否存在定点,使为定值?若存在求出的坐标,不存在说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1[7580),第2[8085),第3[8590),第4[9095),第5[95100],得到的频率分布直方图如图所示,同时规定成绩在85分以上的学生为优秀,成绩小于85分的学生为良好,且只有成绩为优秀的学生才能获得面试资格.

1)求出第4组的频率,并补全频率分布直方图;

2)根据样本频率分布直方图估计样本的中位数与平均数;

3)如果用分层抽样的方法从优秀良好的学生中共选出5人,再从这5人中选2人,那么至少有一人是优秀的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为单调递增数列,为其前项和,

(Ⅰ)求的通项公式;

(Ⅱ)若为数列的前项和,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数处取得极值,求的值,并求函数处的切线方程;

(2)若上恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案