分析:(Ⅰ)由直平行六面体ABCD-A1B1C1D1,可知AA1⊥面ABCD,根据A1D⊥BD,A1D⊥BE,可证A1D⊥平面BDE.
(Ⅱ)过M作MN⊥DE于N,连BN.易证BNM就是二面角B-DE-C的平面角,在Rt△BMN中,可求二面角B-DE-C的大小;
(Ⅲ)易证BN⊥平面A1DE,从而BN的长就是点B到平面A1DE的距离,故可求点B到平面A1DE的距离.
解答:(Ⅰ)证明:∵直平行六面体ABCD-A
1B
1C
1D
1中,AA
1⊥面ABCD
又∵AD⊥BD,∴A
1D⊥BD.…(2分)
又A
1D⊥BE,∴A
1D⊥平面BDE.…(3分)
(Ⅱ)解:连B
1C.∵A
1B
1∥CD,∴B
1C∥A
1D.∵A
1D⊥BE,∴B
1C⊥BE,
∴∠BB
1C=∠CBE,∴Rt△BB
1C∽Rt△CBE,
∴
=.∵
CE=BB1,BC=AD=a,∴
B=BC2=a2,∴
BB1=a.…(5分)
取CD中点M,连BM.∵
CD=a,∴
BM=a.
过M作MN⊥DE于N,连BN.∵平面CD
1⊥平面BD,BM⊥CD,∴BM⊥平面CD
1,
∴BN⊥DE,∴∠BNM就是二面角B-DE-C的平面角.…(7分)∵
sin∠MDN==,DE===a,
∴
MN=.在Rt△BMN中,
tan∠BNM==,∴
∠BNM=arctan.
即二面角B-DE-C等于
arctan.…(9分)
(Ⅲ)解:∵A
1D⊥平面BDE,BN?平面BDE,∴A
1D⊥BN.…(10分)
又∵BN⊥DE,∴BN⊥平面A
1DE,即BN的长就是点B到平面A
1DE的距离.…(11分)
∵
BM=a,MN=,∴
BN==a,
即点B到平面A
1DE的距离为
a.…(12分)
点评:本题以直平行六面体为载体,考查线面垂直,考查面面角,考查点面距离,关键是利用线面垂直的判定定理,正确表示面面角,线面距离的线段.