精英家教网 > 高中数学 > 题目详情

【题目】袋中有7个球,其中4个白球,3个红球,从袋中任意取出2个球,求下列事件的概率:

(1) 取出的2个球都是白球;

(2)取出的2个球中1个是白球,另1个是红球.

【答案】(1);(2).

【解析】

1)用列举法可得从袋中7个球中一次任意取出2个球的基本事件的个数,其中取出的2个球均为白球的个数,再利用古典概型的概率计算公式即可得出;

2)用列举法得到取出的2个球中1个是白球,另1个是红球基本事件个数,再利用古典概型的概率计算公式即可得.

设4个白球的编号为1,2,3,4,3个红球的编号为5,6,7,从袋中的7个小球中任取2个的方法为(1,2),(1,3),(1,4),(1,5),(1,6),(1,7) ,(2,3),(2,4),(2,5),(2,6),(2,7) ,(3,4),(3,5),(3,6),(3,7) ,(4,5),(4,6),(4,7) ,(5,6), (5,7) ,(6,7) ,共21种.

(1)从袋中的7个球中任取2个,所取的2个球全是白球的方法总数,即是从4个白球中任取2个的方法总数,共有6种,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴取出的2个球全是白球的概率为

(2)从袋中的7个球中任取2个,其中1个为红球,而另1个为白球,其取法包括(1,5),(1,6),(1,7) ,(2,5),(2,6),(2,7) ,(3,5),(3,6),(3,7) ,(4,5),(4,6) ,(4,7) ,共12种.

∴取出的2个球中1个是白球,另1个是红球的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设等差数列的前项和为,在数列中,,且,则的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是平行四边形,.

(1)求证:平面平面

(2)若的中点,为棱上的点,平面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知点在椭圆上,将射线绕原点逆时针旋转,所得射线交直线于点.以为极点,轴正半轴为极轴建立极坐标系.

(1)求椭圆和直线的极坐标方程;

(2)证明::中,斜边上的高为定值,并求该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知公比为整数的正项等比数列满足:

1)求数列的通项公式;

2)令,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】华中师大附中中科教处为了研究高一学生对物理和数学的学习是否与性别有关,从高一年级抽取60,名同学(男同学30名,女同学30名),给所有同学物理题和数学题各一题,让每位同学自由选择一道题进行解答.选题情况如下表:(单位:人)

(1)在犯错误的概率不超过1%是条件下,能否判断高一学生对物理和数学的学习与性别有关?

(2)经过多次测试后发现,甲每次解答一道物理题所用的时间5—8分钟,乙每次解答一道物理题所用的时间为6—8分钟,现甲、乙解同一道物理题,求甲比乙先解答完的概率;

(3)现从选择做物理题的8名女生中任意选取两人,对题目的解答情况进行全程研究,记甲、乙两女生被抽到的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过且垂直于轴的焦点弦的弦长为,过的直线交椭圆两点,且的周长为.

(1)求椭圆的方程;

(2)已知直线互相垂直,直线且与椭圆交于点两点,直线且与椭圆交于两点.求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的部分图象如图所示

(1)求函数的解析式;

(2)设,且方程有两个不同的实数根,求实数的取值范围和这两个根的和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(Ⅰ)若,求的极值;

(Ⅱ)若函数的两个零点为,记,证明:

【答案】(Ⅰ)极大值为无极小值;证明见解析.

【解析】分析:(Ⅰ)先判断函数上的单调性,然后可得当时,有极大值,无极小值.不妨设由题意可得,又由条件得,构造,令,则,利用导数可得故得所以

详解:(Ⅰ)

且当时,,即上单调递增,

时,,即上单调递减,

∴当时,有极大值,且无极小值.

(Ⅱ)函数的两个零点为,不妨设

,则

上单调递减,

点睛:(1)研究方程根的情况可以通过导数研究函数的单调性、最大(小)值、函数的变化趋势等根据题目要求画出函数图象的大体图象然后通过数形结合的思想去分析问题可以使得问题的求解有一个清晰、直观的整体展现

(2)证明不等式时常采取构造函数的方法,然后通过判断函数的单调性借助函数的最值进行证明

型】解答
束】
22

【题目】在平面直角坐标系中,直线的参数方程为为参数,.以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为:

(Ⅰ)求直线的普通方程与曲线的直角坐标方程;

Ⅱ)设直线与曲线交于不同的两点的值.

查看答案和解析>>

同步练习册答案